quarta-feira, 13 de abril de 2016

Sistema solar



El sistema solar es el sistema planetario en el que se encuentran la Tierra y otros objetos astronómicos que giran directa o indirectamente en una órbita alrededor de una única estrella conocida como el Sol.

La estrella concentra el 99,75 % de la masa del sistema solar,y la mayor parte de la masa restante se concentra en ocho planetas cuyas órbitas son prácticamente circulares y transitan dentro de un disco casi llano llamado plano eclíptico.Los cuatro más cercanos, considerablemente más pequeños Mercurio, Venus, Tierra y Marte, también conocidos como los planetas terrestres, están compuestos principalmente por roca y metal.Mientras que los cuatro más alejados, denominados gigantes gaseosos o "planetas jovianos", más masivos que los terrestres, están compuesto de hielo y gases. Los dos más grandes, Júpiter y Saturno, están compuestos principalmente de helio e hidrógeno. Urano y Neptuno, denominados los gigantes helados, están formados mayoritariamente por agua congelada, amoniaco y metano.

Concepción artística de un disco protoplanetario.

El Sol es el único cuerpo celeste que emite luz propia,la cual es producida por la combustión de hidrógeno y su transformación en helio por la fusión nuclear.El sistema solar se formó hace unos 4600 millones de años a partir del colapso de una nube molecular. El material residual originó un disco circunestelar protoplanetario en el que ocurrieron los procesos físicos que llevaron a la formación de los planetas.El sistema solar se ubica en la actualidad en la nube Interestelar Local que se halla en la Burbuja Local del brazo de Orión, de la galaxia espiral Vía Láctea, a unos 28 000 años luz del centro de esta.


Concepción artística del sistema solar y las órbitas de sus planetas.

El sistema solar es también el hogar de varias regiones compuestas por objetos pequeños. El cinturón de asteroides, ubicado entre Marte y Júpiter, es similar a los planetas terrestres ya que está constituido principalmente por roca y metal, en este se encuentra el planeta enano Ceres. Más allá de la órbita de Neptuno están el cinturón de Kuiper, el disco disperso y la nube de Oort, que incluyen objetos transneptunianos formados por agua, amoníaco y metano principalmente. En este lugar existen cuatro planetas enanos Haumea, Makemake, Eris y Plutón, el cual fue considerado el noveno planeta del sistema solar hasta 2006. Este tipo de cuerpos celestes ubicados más allá de la órbita de Neptuno son también llamados plutoides, los cuales junto a Ceres, poseen el suficiente tamaño para que se hayan redondeado por efectos de su gravedad, pero que se diferencian principalmente de los planetas porque no han vaciado su órbita de cuerpos vecinos.

Adicionalmente a los miles de objetos pequeños de estas dos zonas, algunas docenas de los cuales son candidatos a planetas enanos, existen otros grupos como cometas, centauros y polvo cósmico que viajan libremente entre regiones. Seis planetas y tres planetas enanos poseen satélites naturales. El viento solar, un flujo de plasma del Sol, crea una burbuja de viento estelar en el medio interestelar conocido como heliosfera, la que se extiende hasta el borde del disco disperso. La nube de Oort, de la cual se cree es la fuente de los cometas de período largo, es el límite del sistema solar y su borde está ubicado a un año luz desde el Sol.

A principios del año 2016 se publicó un estudio según el cual puede existir un noveno planeta en el sistema Solar, al que dieron el nombre provisional de Phattie.

Descubrimientos y exploración

Algunas de las más antiguas civilizaciones concibieron al universo desde una perspectiva geocéntrica, como en Babilonia en donde su visión del mundo estuvo representada de esta forma.En Occidente, el griego presocrático Anaximandro declaró a la Tierra como centro del universo, imaginó a esta como un pilar en forma de tambor equilibrado en sus cuatro puntos más distantes lo que, en su opinión, le permitió tener estabilidad.Pitágoras y sus seguidores hablaron por primera vez del planeta como una esfera, basándose en la observación de los eclipses;y en el siglo IV a. C. Platón junto a su estudiante Aristóteles escribieron textos del modelo geocéntrico de Anaximandro, fusionándolo con el esférico pitagórico. Pero fue el trabajo del astrónomo heleno Claudio Ptolomeo, especialmente su publicación llamada Almagesto expuesta en el siglo II de nuestra era, el cual sirvió durante un período de casi 1300 años como la norma en la cual se basaron tanto astrónomos europeos como islámicos.

Si bien el griego Aristarco presentó en el siglo siglo III a. C. a la teoría heliocéntrica y más adelante el matemático hindú Aryabhata hizo lo mismo, ningún astrónomo desafió realmente el modelo geocéntrico hasta la llegada del polaco Nicolás Copérnico el cual causó una verdadera revolución en esta rama a nivel mundial,por lo cual es considerado el padre de la astronomía moderna.Esto debido a que, a diferencia de sus antecesores, su obra consiguió una amplia difusión pese a que fue concebida para circular en privado; el papa Clemente VII pidió información de este texto en 1533 y Lutero en el año 1539 lo calificó de "astrólogo advenedizo que pretende probar que la Tierra es la que gira".La obra de Copérnico otorga dos movimientos a la tierra, uno de rotación en su propio eje cada horas y uno de traslación alrededor del Sol cada año, con la particularidad de que este era circular y no elíptico como lo describimos hoy.

En el siglo XVII el trabajo de Copérnico fue impulsado por científicos como Galileo Galilei, quien ayudado con un nuevo invento, el telescopio, descubre que al rededor de Júpiter rotan satélites naturales que afectaron en gran forma la concepción de la teoría geocéntrica ya que estos cuerpos celestes no orbitaban a la Tierra;lo que ocasionó un gran conflicto entre la iglesia y los científicos que impulsaban esta teoría, el cual culminó con el apresamiento y sentencia del tribunal de la inquisición a Galileo por herejía al estar su idea contrapuesta con el modelo clásico religioso.Su contemporáneo Johannes Kepler, a partir del estudio de la órbita circular intentó explicar la traslación planetaria sin conseguir ningún resultado,por lo que reformuló sus teorías y publicó, en el año 1609, las hoy conocidas Leyes de Kepler en su obra Astronomia Nova, en la que establece una órbita elíptica la cual se confirmó cuando predijo satisfactoriamente el tránsito de Venus del año 1631.Junto a ellos el científico británico Isaac Newton formuló y dio una explicación al movimiento planetario mediante sus leyes y el desarrollo del concepto de la gravedad.

En el año 1704 se acuñó el término sistema solar.El científico británico Edmund Halley dedicó sus estudios principalmente al análisis de las órbitas de los cometas.El mejoramiento del telescopio durante este tiempo permitió a los científicos de todo el mundo descubrir nuevas características de los cuerpos celestes que existen.A mediados del siglo XX, el 12 de abril de 1961, el cosmonauta Yuri Gagarin se convirtió en el primer hombre en el espacio;la misión estadounidense Apolo 11 al mando de Neil Armstrong llega a la Luna. En la actualidad, el sistema solar se estudia con ayuda de telescopios terrestres, observatorios espaciales y misiones espaciales.

Características generales

Los planetas y los asteroides orbitan alrededor del Sol, aproximadamente en un mismo plano y siguiendo órbitas elípticas (en sentido antihorario, si se observasen desde el Polo Norte del Sol); aunque hay excepciones, como el cometa Halley, que gira en sentido horario.El plano en el que gira la Tierra alrededor del Sol se denomina plano de la eclíptica, y los demás planetas orbitan aproximadamente en el mismo plano. Aunque algunos objetos orbitan con un gran grado de inclinación respecto de este, como Plutón que posee una inclinación con respecto al eje de la eclíptica de 17º, así como una parte importante de los objetos del cinturón de Kuiper.

Según sus características, los cuerpos que forman parte del sistema solar se clasifican como sigue:

El Sol, una estrella de tipo espectral G2 que contiene más del 99,85 % de la masa del sistema. Con un diámetro de 1 400 000 km, se compone de un 75 % de hidrógeno, un 20 % de helio y 5 % de oxígeno, carbono, hierro y otros elementos.
Los planetas, divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos, mientras que Urano y Neptuno suelen nombrarse gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
Los planetas enanos son cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente como para haber atraído o expulsado a todos los cuerpos a su alrededor. Son: Plutón (hasta 2006 era considerado el noveno planeta del sistema solar), Ceres, Makemake, Eris y Haumea.
Los satélites son cuerpos mayores que orbitan los planetas; algunos son de gran tamaño, como la Luna, en la Tierra; Ganímedes, en Júpiter, o Titán, en Saturno.
Los asteroides son cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.

Los objetos del cinturón de Kuiper son objetos helados exteriores en órbitas estables, los mayores de los cuales son Sedna y Quaoar.

Los cometas son objetos helados pequeños provenientes de la nube de Oort.

El espacio interplanetario en torno al Sol contiene material disperso procedente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas que forman un plasma que es expulsado por el Sol en el viento solar. El límite exterior del sistema solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15 000 millones de kilómetros del Sol).

Los sistemas planetarios detectados alrededor de otras estrellas parecen muy diferentes del sistema solar, si bien con los medios disponibles solo es posible detectar algunos planetas de gran masa en torno a otras estrellas. Por tanto, no parece posible determinar hasta qué punto el sistema solar es característico o atípico entre los sistemas planetarios del Universo.

Distancias de los planetas

Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes, de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior, aunque esto no se ajusta a todos los planetas. Esta relación se expresa mediante la ley de Titius-Bode, una fórmula matemática aproximada que indica la distancia de un planeta al Sol, en Unidades Astronómicas (UA):



donde k  = 0, 1, 2, 4, 8, 16, 32, 64, 128.

Donde la órbita de Mercurio se encuentra en k = 0 y semieje mayor 0,4 UA, la órbita de Marte es k = 4 a 1,6 UA, y Ceres (el mayor asteroide) es k = 8. En realidad las órbitas de Mercurio y Marte se encuentran en 0,38 y 1,52 UA. Esta ley no se ajusta a todos los planetas, por ejemplo Neptuno está mucho más cerca de lo que predice esta ley. No hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan solo de una coincidencia.

Estrella central

El Sol es la estrella única y central del sistema solar; por tanto, es la estrella más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo terrestre determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, y es por ello la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años, y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años.

A pesar de ser una estrella mediana, es la única cuya forma circular se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Casualmente, la combinación de tamaños y distancias del Sol y la Luna respecto a la Tierra, hace que se vean aproximadamente con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

Se han descubierto sistemas planetarios que tienen más de una estrella central (sistema estelar).

Planetas

Los ocho planetas que componen el sistema solar son, de menor a mayor distancia respecto al Sol, los siguientes:

Mercurio
Venus
Tierra
Marte
Júpiter
Saturno
Urano
Neptuno

Los planetas son cuerpos que giran formando órbitas alrededor de la estrella, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica), y han limpiado la vecindad de su órbita de planetesimales (dominancia orbital).

Los planetas interiores son Mercurio, Venus, la Tierra y Marte y tienen la superficie sólida. Los planetas exteriores son Júpiter, Saturno, Urano y Neptuno, también se denominan planetas gaseosos porque contienen en sus atmósferas gases como el helio, el hidrógeno y el metano, y no se conoce con certeza la estructura de su superficie.

El 24 de agosto de 2006, la Unión Astronómica Internacional (UAI) excluyó a Plutón como planeta del sistema solar, y lo clasificó como planeta enano.

A principios del año 2016 se publicó un estudio según el cual puede existir un noveno planeta en el sistema Solar, al que dieron el nombre provisional de Phattie. Dicho estudio se centró en la explicación de las órbitas de muchos de los objetos en el cinturón de Kuiper, que difieren mucho con las órbitas que se calculan, incluidos objetos muy conocidos Sedna. Por tanto se surgió originalmente la idea de la existencia de un objeto no conocido perturbando dichas órbitas. Utilizando modelos matemáticos se realizaron simulaciones en computadora, y se determinó que el posible planeta tendría una órbita excéntrica a una distancia de unas entre 700 y 200 UA del Sol, y tardaría unos diez o veinte mil años en dar una vuelta.

Planetas enanos

Los cinco planetas enanos del sistema solar, de menor a mayor distancia respecto al Sol, son los siguientes:

Ceres
Plutón
Haumea
Makemake
Eris

Los planetas enanos son aquellos que, a diferencia de los planetas, no han limpiado la vecindad de su órbita.

Poco después de su descubrimiento en 1930, Plutón fue clasificado como un planeta por la Unión Astronómica Internacional (UAI). Sin embargo, tras el descubrimiento de otros grandes cuerpos con posterioridad, se abrió un debate con objeto de reconsiderar dicha decisión. El 24 de agosto de 2006, en la XXVI Asamblea General de la UAI en Praga, se decidió que el número de planetas no se ampliase a doce, sino que debía reducirse de nueve a ocho, y se creó entonces la nueva categoría de planeta enano, en la que se clasificaría Plutón, que dejó por tanto de ser considerado planeta debido a que, por tratarse de un objeto transneptuniano perteneciente al cinturón de Kuiper, no ha limpiado la vecindad de su órbita de objetos pequeños.

Grandes satélites del sistema solar

Algunos satélites del sistema solar son tan grandes que, si se encontraran orbitando directamente alrededor del Sol, se clasificarían como planetas o como planetas enanos; por orbitar a los planetas principales, estos cuerpos pueden denominarse «planetas secundarios».

Cuerpos menores

Los cuerpos menores del sistema solar están agrupados en:

Cinturón de asteroides

Objetos transneptunianos y Cinturón de Kuiper

Nube de Oort

Un cuerpo menor del sistema solar (CMSS o del inglés SSSB, small Solar System body) es, según la resolución de la UAI (Unión Astronómica Internacional) del 22 de agosto de 2006, un cuerpo celeste que orbita en torno al Sol y que no es planeta, ni planeta enano, ni satélite:

Todos los otros objetos [referido a los que no sean ni planetas ni planetas enanos ni satélites], y que orbitan alrededor del Sol, se deben denominar colectivamente "cuerpos menores del sistema solar" (Small Solar-System Bodies).
Estos actualmente incluyen la mayoría de los asteroides del sistema solar, la mayoría de los objetos transneptunianos (OTN), cometas, y otros pequeños cuerpos.
Por consiguiente, según la definición de la UAI, son cuerpos menores del Sistema Solar, independientemente de su órbita y composición:

Los asteroides.
Los cometas.
Los meteoroides.

Según las definiciones de planeta y de planeta enano, que atienden a la esfericidad del objeto debido a su gran masa, se puede definir como «cuerpo menor del sistema solar», por exclusión, a todo cuerpo celeste que, sin ser un satélite, no haya alcanzado suficiente tamaño o masa como para adoptar una forma esencialmente esférica.

Según algunas estimaciones, la masa requerida para alcanzar la condición de esfericidad se situaría en torno a los 5 x 1020 kg, resultando el diámetro mínimo en torno a los 800 km. Sin embargo, características como la composición química, la temperatura, la densidad o la rotación de los objetos pueden variar notablemente los tamaños mínimos requeridos, por lo que se rechazó asignar valores apriorísticos a la definición, dejando la resolución individual de cada caso a la observación directa.

Según la UAI, algunos de los cuerpos menores del sistema solar más grandes podrían reclasificarse en el futuro como planetas enanos, tras un examen para determinar si están en equilibrio hidrostático, es decir: si son suficientemente grandes para que su gravedad venza las fuerzas del sólido rígido hasta haber adoptado una forma esencialmente esférica.

Exceptuando los objetos transneptunianos, los cuerpos menores del sistema solar de mayor tamaño son Vesta y Palas, con algo más de 500 km de diámetro.

La dimensión astronómica de las distancias en el espacio

Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer un modelo a escala que permita tener una percepción más clara del mismo. Imagínese un modelo reducido en el que el Sol esté representado por una pelota de 220 mm de diámetro. A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm). Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol, respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto a la estrella más próxima (Próxima Centauri), estaría a 6 332 km del Sol, y la estrella Sirio, a 13 150 km.

Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257 000 km/h), se tardaría unas tres semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos dos años y medio en llegar a Plutón y abandonar el sistema solar. A partir de ahí, a esa velocidad, sería necesario esperar unos 17 600 años hasta llegar a la estrella más próxima, y 35 000 años hasta llegar a Sirio.

Una escala comparativa más exacta puede tenerse si se compara el Sol con un disco compacto de 12 cm de diámetro. A esta escala, la Tierra tendría poco más de un milímetro de diámetro (1,1 mm). El Sol estaría a 6,44 metros. El diámetro de la estrella más grande del Universo conocido, VY Canis Majoris, sería de 264 metros (imagínese esa enorme estrella de casi tres manzanas de casas de tamaño, en comparación con nuestra estrella de 12 cm). La órbita externa de Eris se alejaría a 625,48 metros del Sol. Allí nos espera un gran vacío hasta la estrella más cercana, Próxima Centauri, a 1645,6 km de distancia. A partir de allí, las distancias galácticas exceden el tamaño de la Tierra (aún utilizando la misma escala). Con un Sol del tamaño de un disco compacto, el centro de la galaxia estaría a casi 11 millones de kilómetros y el diámetro de la Vía Láctea sería de casi 39 millones de kilómetros. Habría un enorme vacío, pues la galaxia Andrómeda estaría a 1028 millones de kilómetros, casi la distancia real entre el Sol y Saturno.

sábado, 9 de abril de 2016

Irreversibilidad


En termodinámica, el concepto de irreversibilidad se aplica a aquellos procesos que, como la entropía, no son reversibles en el tiempo. Desde esta perspectiva termodinámica, todos los procesos naturales son irreversibles. El fenómeno de la irreversibilidad resulta del hecho de que si un sistema termodinámico de moléculas interactivas es trasladado de un estado termodinámico a otro, ello dará como resultado que la configuración o distribución de átomos y moléculas en el seno de dicho sistema variará.

Cierta cantidad de "energía de transformación" se activará cuando las moléculas del "cuerpo de trabajo" interaccionen entre sí al cambiar de un estado a otro. Durante esta transformación, habrá cierta pérdida o disipación de energía calorífica, atribuible al rozamiento intermolecular y a las colisiones.

Lo importante es que dicha energía no será recuperable si el proceso se invierte.

Absoluto contra reversibilidad estadística

La termodinámica define el comportamiento estadístico de muchas entidades, cuyo exacto comportamiento es dado por leyes más específicas. Debido a que las leyes fundamentales de la física son en todo momento reversibles,puede argumentarse que la irreversibilidad de la termodinámica debe presentarse estadísticamente en la naturaleza, es decir, que debe simplemente ser muy improbable, pero no imposible, que la entropía disminuya con el tiempo en un sistema dado.

Historia

El físico alemán Rudolf Clausius, en los años 50 del siglo XIX, fue el primero en cuantificar matemáticamente el fenómeno de la irreversibilidad en la naturaleza, y lo hizo a través de la introducción del concepto de entropía. En su escrito de 1854 "Sobre la modificación del segundo teorema fundamental en la teoría mecánica del calor", Clausius afirma:

Podría ocurrir, además, que en lugar de un descenso en la transmisión de calor que acompañaría, en el único y mismo proceso, la transmisión en aumento, puede ocurrir otro cambio permanente, que tiene la peculiaridad de no ser reversible, sin que pueda tampoco ser reemplazado por un nuevo cambio permanente de una clase similar, o producir un descenso en la transmisión de calor.

Sistemas complejos

Sin embargo, aun en el caso de que los físicos afirmen que todo proceso es irreversible en cierto sentido, la diferencia entre los eventos reversibles e irreversibles tiene valor explicativo, si son considerados los sistemas más complejos, como organismos vivos, especies o ecosistemas.

De acuerdo con los biólogos Humberto Maturana y Francisco Varela, los seres vivos se caracterizan por la autopoiesis, que permite su existencia en el tiempo.

Formas más primitivas de sistemas autoorganizados han sido descritas por el físico y químico belga Ilya Prigogine. En el contexto de sistemas complejos, los eventos que resultan al final de ciertos procesos autoorganizativos, como la muerte, la extinción de una especie o el colapso de un sistema meteorológico, pueden ser considerados irreversibles.

Incluso si desarrollamos un clon con el mismo principio organizativo (por ejemplo, idéntica estructura de ADN), esto no quiere decir que el viejo sistema volviese a reproducirse. Los eventos a los que pueden adaptarse las capacidades de autoorganización de los organismos, especies u otros sistemas complejos, de la misma manera que lesiones menores o cambios en el ambiente físico, son reversibles. Principios ecológicos como la sostenibilidad y el principio de precaución pueden ser definidos con referencia al concepto de reversibilidad.

Con todo, la postura de Ilya Prigogine sobre la irreversibilidad y la entropía varía con respecto a la de la física tradicional. En su conferencia El nacimiento del tiempo (Roma, 1987), el científico sostuvo:

La entropía contiene siempre dos elementos dialécticos: un elemento creador de desorden, pero también un elemento creador de orden. (...) Vemos, pues, que la inestabilidad, las fluctuaciones y la irreversibilidad desempeñan un papel en todos los niveles de la naturaleza: químico, ecológico, climatológico, biológico -con la formación de biomoléculas-, y finalmente cosmológico.
De esta manera, se observa que el fenómeno de la irreversibilidad para Prigogine tiene carácter constructivo, destacando el “papel creativo del tiempo”, lo que, al menos a nivel macroscópico, supone una especie de anti-entropía:

El universo del no-equilibrio es un universo coherente.

Otras acepciones

El término irreversibilidad se emplea además en otros campos de las ciencias y el conocimiento, como la economía, el derecho y la medicina.

En medicina, por ejemplo, designa a ciertos procesos degenerativos o dolencias incurables: "Sufre un coma irreversible."

En el plano psicológico, las grandes desgracias y sufrimientos que aquejan al ser humano (la pérdida de seres queridos, las quiebras y reveses económicos, las grandes derrotas militares...) no lo son, en gran medida, sino por ser interpretados como irreversibles. La propia muerte es el hecho irreversible por antonomasia.

Retrocausalidad


La retrocausalidad se refiere a cualquiera de los fenómenos o procesos hipotéticos capaces de invertir la causalidad, permitiendo que un efecto preceda a su causa —imaginemos que la huella precede a la pisada, el eco a la voz, la detonación al disparo, etc.

Conocida en inglés como retro-causation o backward causation, es fundamentalmente un experimento mental, dentro de la filosofía de la ciencia, basado en elementos de la ciencia física, que se orienta a las siguientes cuestiones: ¿Puede lo que ocurre en el futuro afectar al presente?, y ¿puede el presente afectar al pasado?

Las consideraciones filosóficas acerca de la flecha del tiempo y del viaje en el tiempo a menudo se enfrentan a problemas relacionados con la retrocausalidad.Aunque algunas teorías se han propuesto como formas de retrocausalidad, no existen observaciones científicas probadas al respecto.

En filosofía

Los esfuerzos filosóficos para entender la causalidad se remontan a la Antigüedad, hasta la figura de Aristóteles y sus disquisiciones acerca del primer motor o motor inmóvil, pero la idea de que la flecha del tiempo puede ser invertida es mucho más reciente.

En realidad, la retrocausalidad ha sido siempre considerada una contradicción en sí misma, dado que, como ya indicara el filósofo del siglo XVIII David Hume, al examinar dos sucesos relacionados, la causa, simplemente, por definición, es el suceso que precede al efecto (el interruptor activa la luz, y no a la inversa).Es más, la capacidad de influir en el pasado sugiere que los sucesos pudieran ser negados por sus propios efectos, originando una paradoja física, la más conocida de las cuales es la paradoja del abuelo (si yo viajo al pasado y mato a mi abuelo antes de que éste conozca a mi abuela, cómo es que estoy yo aquí para viajar al pasado y hacerlo).

En los años 50, el filósofo Michael Dummett se manifestó en contra de tales trabas, afirmando que no existe objeción filosófica alguna a que los efectos precedan a las causas. Este argumento fue refutado por su colega Anthony Flew y, más tarde, por Max Black, quien criticó lo fácil que era hacer tales afirmaciones, ya que el observador siempre podrá intervenir en los efectos que elija.8 Un argumento posterior, relacionado con el libre albedrío, lo hallamos en la llamada paradoja de Newcomb.

Ciertos filósofos esencialistas han propuesto otras teorías, como la que contempla la existencia de "fuerzas causales genuinas en la Naturaleza".

Posteriores investigaciones filosóficas sobre este asunto han incorporado aspectos de la física moderna, incluyendo la partícula hipotética denominada taquión (una partícula que presuntamente viaja más rápido que la luz, por lo que es capaz de alcanzar el pasado), así como ciertos aspectos de la simetría del tiempo dentro de la mecánica cuántica. Jan Faye, de la Universidad de Copenhague, ha argüido que las objeciones lógicas a un viaje en el tiempo en el plano macroscópico no tienen por qué impedir la retrocausalidad en otros niveles (p. ej., microscópicos).Incluso si tales efectos fueran posibles no serían capaces de producir diferentes efectos que los que resultarían de relaciones causales normales.

La filósofa holandesa Jeanne Peijnenburg, de la Universidad de Groningen, apela a la retrocausalidad para describir cómo una imaginación expandida puede ser capaz de redefinir o incluso alterar sucesos pasados, resultando en cambios en la personalidad y en la percepción presentes.De acuerdo con su colega holandés Cornelis van Putten, sin embargo, no hay necesidad de modificar el pasado para lograr los resultados que Peijnenburg propone.

En física

La física actual generalmente no contempla la retrocausalidad. No obstante, unas pocas teorías que permiten que determinadas partículas o flujos de información viajen atrás en el tiempo han sido propuestas por reputados científicos, habiendo recibido el visto bueno de la comunidad científica internacional. Pero, en general, los modelos que parecen permitir la retrocausalidad o el viaje en el tiempo se consideran artefactos matemáticos conceptualmente defectuosos.

La retrocausalidad parece inevitable en modelos de universo que admiten curvas temporales cerradas. Este tipo de anomalías aparecen frecuentemente en universos llenos de materia exótica, aunque también se han encontrado modelos con materia ordinaria, como el universo de Gödel, que presentan esta característica. Otro tipo de retrocausalidad es el que aparece en ecuaciones como la fuerza de Abraham-Lorentz que supuso un desafío teórico importante que lastró la electrodinámica clásica. Igualmente la teoría del absorbedor de Wheeler-Feynman relacionada con el caso anterior parece difícil de conjugar con la causalidad física.

Modelos históricos

A medida que crecía la moderna comprensión de la física de partículas, la retrocausalidad iba siendo empleada como herramienta para explicar inusuales o poco conocidos fenómenos en su momento, incluyendo el electromagnetismo y la antimateria.

Los físicos John Wheeler y Richard Feynman propusieron hace tiempo una teoría usando la retrocausalidad y una forma temporal de interferencia destructiva para explicar la ausencia de un tipo de onda convergente concéntrica sugerida por ciertas soluciones de las ecuaciones de Maxwell.Se trataría de las llamadas “ondas avanzadas”, que volverían atrás en el tiempo; éstas, sin embargo, no han sido observadas experimentalmente hasta el presente, y se ha inferido que puede tratarse simplemente de una interpretación matemática para describir ondas normales.

Feynman empleó asimismo la retrocausalidad para probar un modelo teórico del positrón,reinterpretando las soluciones de energía negativa presentes en la ecuación de Dirac. En este modelo, los electrones se mueven atrás en el tiempo, poseyendo carga eléctrica positiva. Wheeler postuló este concepto para explicar las propiedades compartidas por todos los electrones, afirmando enigmáticamente que “todos los electrones son el mismo electrón” con una compleja y autointersecante línea de universo.

Yoichiro Nambu aplicó esta teoría a la producción y aniquilación mutua de pares de partículas-antipartículas, afirmando:

La eventual creación y aniquilación de pares puede ocurrir en este momento y no debe ser interpretada como tal creación-aniquilación, sino sólo como un cambio de dirección en el movimiento de las partículas, del pasado al futuro o del futuro al pasado.
Aunque los más recientes descubrimientos sobre la antimateria han dejado obsoleta esta interpretación, se emplea todavía con propósitos conceptuales, como en los diagramas de Feynman.

Cuestiones actuales

Temas candentes en física, sobre todo relacionados con la síntesis de la gravedad einsteiniana con la mecánica cuántica, sugieren que la retrocausalidad puede ser posible en circunstancias determinadas.

Como se ha visto, la retrocausalidad, al invertir la causalidad, puede sugerir una vuelta en el tiempo. Así, la curva cerrada de tipo tiempo (aquella que permite el acceso al pasado) proviene de soluciones exactas a la ecuación de campo de Einstein. Aunque estas curvas no parecen existir en condiciones normales, circunstancias extraordinarias del espacio-tiempo, como los agujeros de gusano o las regiones próximas a las cuerdas cósmicas, podrían facilitar su formación. La materia extraña o los defectos topológicos cósmicos que se requieren para la creación de estas condiciones, aún no han sido observados.

En este sentido, el físico Stephen Hawking ha sugerido un mecanismo, que él denomina conjetura de protección de la cronología, que destruiría toda curva cerrada de tipo tiempo antes de poder ser utilizada.Sin embargo, estas objeciones a la existencia de curvas de tipo tiempo no son universalmente aceptadas.

La retrocausalidad ha sido también propuesta como mecanismo explicativo de lo que Albert Einstein llamó "acción fantasmagórica a distancia" ("spooky action at a distance"), que ocurriría como resultado del entrelazamiento cuántico. Aunque el punto de vista dominante es que los efectos de dicho entrelazamiento no requieren una comunicación directa entre las partículas involucradas, Costa de Beauregard propuso una teoría alternativa.El físico John Cramer, de la Universidad de Washington, presentó el diseño de un experimento para probar esta teoría en la Asociación Americana para el Avance de la Ciencia, recibiendo cierta atención por parte de los medios de comunicación, si bien el experimento no ha sido llevado a cabo desde su formulación en 2006.Ello no obstante, la retrocausalidad ha sido propuesta como una explicación para el dispositivo llamado borrador cuántico de elección retardada (del inglés, delayed choice quantum eraser),un experimento de la mecánica cuántica que encuentra complementariedad en el comportamiento de onda y de partícula de agentes cuánticos, cuando normalmente, según las leyes de Bohr, éstas no pueden ser exhibidas al mismo tiempo.

La partícula superlumínica hipotética denominada taquión —propuesta en el contexto de la teoría de cuerdas bosónica y de otros campos de la física de alta energía—, al superar la velocidad de la luz, se movería hacia atrás en el tiempo. Pese a su frecuente descripción en las novelas de ciencia-ficción (señaladamente la de ciencia-ficción dura Cronopaisaje,de Gregory Benford) como método para enviar mensajes al pasado, las teorías que predicen los taquiones no permiten que interactúen con la materia normal de “tipo tiempo” de forma que puedan violar la causalidad entendida tradicionalmente. De modo específico, el principio de reinterpretación de Feinberg juzga imposible la construcción de un detector de taquiones capaz de recibir información de ese tipo.

Causalidad (filosofía)

La causalidad es la eventualidad que expresa la efectividad como consecuencia de la potencialidad para un acto.

Condiciones

Para que un suceso A sea la causa de un suceso B se tienen que cumplir tres condiciones:

Que A preceda a B.
Que siempre que suceda A suceda B.
Que A y B estén próximos en el espacio y en el tiempo, relativamente.

El observador, tras varias observaciones, llega a generalizar que puesto que hasta ahora siempre que ocurrió A se ha dado B, en el futuro ocurrirá lo mismo. Así se establece una ley.

La idea de causa ha suscitado un buen número de debates filosóficos desde los primeros intentos filosóficos. Aristóteles concluye el libro de los Segundos analíticos con el modo en que la mente humana llega a conocer las verdades básicas o premisas primarias o primeros principios que no son innatas, ya que es posible desconocerlas durante gran parte de nuestra vida. Tampoco pueden deducirse a partir de ningún conocimiento anterior, o no serían primeros principios. Afirma que los primeros principios se derivan por inducción, de la percepción sensorial, que implanta los verdaderos universales en la mente humana. De esta idea proviene la máxima escolástica «nada hay en el intelecto que no haya estado antes en los sentidos» (Nihil est in intellectu, quod prius non fuerit in sensu). Al mantener que «conocer la naturaleza de una cosa es conocer por qué es», Aristóteles postuló cuatro tipos mayores de causa como los términos medios más buscados de demostración: «la forma definible; un antecedente que necesita un consecuente; la causa eficiente; la causa final». En Kant, de quien su desacuerdo con el pensamiento de Hume se cita como una motivación para escribir una teoría filosófica, la causalidad es una de las categorías a priori del entendimiento, y entonces no proviene de la costumbre (como decía Hume) sino que tiene un carácter necesario y universal. Esto permite que la ciencia se apoye sobre el principio de causalidad sin dejar de ser necesaria y universal.

Historia

La noción de causalidad ha suscitado debate desde los inicios de la filosofía. Aristóteles concluye el libro de los Segundos analíticos con el modo en que la mente humana llega a conocer las verdades básicas o premisas primarias o primeros principios, que no son innatos, ya que es posible desconocerlos durante gran parte de nuestra vida. Tampoco se pueden deducir a partir de ningún conocimiento anterior, o no serían primeros principios. Afirma que los primeros principios se derivan por inducción, de la percepción sensorial, que implanta los verdaderos universales en la mente humana. De esta idea proviene la máxima escolástica «nada hay en el intelecto que no haya estado antes en los sentidos» (Nihil est in intellectu, quod prius non fuerit in sensu). Al mantener que «conocer la naturaleza de una cosa es conocer, ¿por qué es?» y que «poseemos conocimiento científico de una cosa sólo cuando conocemos su causa». Aristóteles distinguió cuatro tipos de causas:

Causa material
Causa formal
Causa eficiente
Causa final

La noción de causalidad sufrió una dura crítica por parte de David Hume.

Principio de causalidad

El principio de causalidad es un principio clásico de la filosofía y la ciencia, que afirma que todo evento tiene una causa.

Las cosas no ocurren de manera aislada, sino que unas están ligadas a otras en un proceso de interacción. Unas cosas suceden a otras, y con frecuencia en el mismo orden. A los primeros sucesos en una relación los llamamos causas, y a los segundos efectos.

No se debe confundir al principio de causalidad con el Principio de razón suficiente.

El principio de causalidad es un principio fundamental de la investigación científica, suponiendo que la mejor forma de entender y explicar es conocer las causas, porque por un lado podemos prevenir y por otro controlar los efectos, en definitiva dominar los sucesos naturales.

La causalidad en la ciencia

La noción de causalidad es parte integral de muchas ciencias:

En física, en la mecánica newtoniana se admite además que la causa precede siempre al efecto.
En estadística donde es analizada por la estadística inferencial.
En ciencias sociales suele aparecer ligada a un análisis estadístico de variables observadas.
En ciencias naturales diferentes de la física y en procesos en los que no podemos reducir la concurrencia de eventos a un mecanismo físico simple, la idea de causa aparece en procesos complejos entre los que hemos observado una relación causal. Así tras las ecuaciones empíricas se supone hay un proceso físico causal que lleva a una conexión necesaria entre ciertos eventos.

Causalidad (física)

En física, el término causalidad describe la relación entre causas y efectos, es fundamental en todas las ciencias naturales, especialmente en física. En términos generales, la causalidad puede ser estudiada desde varias perspectivas: la filosófica, la de la computación y la estadística.

Introducción

En física clásica se asumía que todos los eventos están causados por otros anteriores y que dicha causalidad es expresable en términos de leyes de la naturaleza. Dicha pretensión llegó a su punto más alto en la afirmación de Pierre Simon Laplace. Laplace afirmó que si se conoce el estado actual del mundo con total precisión, uno puede predecir cualquier evento en el futuro. Esta perspectiva se conoce como determinismo o más precisamente determinismo causal.

Aunque el determinismo de Laplace parece correcto respecto a las ecuaciones aproximadas de la física clásica, la teoría del caos ha añadido pequeñas complicaciones. Muchos sistemas presentan una fuerte sensibilidad a las condiciones iniciales, lo que significa que condiciones iniciales muy similares en ciertos sistemas pueden conducir a comportamientos a largo plazo muy diferentes. Eso sucede por ejemplo en el tiempo atmosférico. Hacia 1987 era habitual usar superordenadores en la predicción del tiempo, por ejemplo el Cray X-MP del Centro Europeo para el Pronóstico del Tiempo a Medio Plazo, que operaba con una capacidad máxima de 800 megaflops, podía calcular en apenas media hora un pronóstico aceptable del tiempo para el día siguiente en todo el hemisferio. Y aunque cada día se realizaban pronósticos de los siguientes diez días, los resultados del pronóstico a partir del cuarto o quinto día diferían sensiblemente de lo previsto por el ordenador.

Sin embargo, por encima de la impredictibilidad práctica causada por el comportamiento estocástico o caótico de los sistemas clásicos, está el hecho de que la mecánica cuántica presenta junto con una evolución determinista recogida en la ecuación de Schrödinger, una evolución no-determinista recogida en el postulado del colapso de la función de onda.

Mecánica relativista

De acuerdo con los postulados comunes de la física newtoniana, la causa precede al efecto en el tiempo. Sin embargo, en la física moderna, el concepto más simple de causalidad ha necesitado ser clarificado. Por ejemplo, en la teoría de la relatividad especial, el concepto de causalidad se mantiene, aunque el tiempo sea relativo y el concepto de simultaneidad de la mecánica clásica no sea aplicable.

A pesar de los problemas causados por la ausencia de un tiempo absoluto independiente del observador, el significado de "precedendecia causal" sigue siendo absoluto y no depende del observador (aunque no pasa igual con el concepto de simultaneidad de conceptos no relacionados causalmente, que ahora sí pasan a depender del observador). Consecuentemente, el principio relativista de causalidad dice que la causa precede a su efecto para observadores inerciales.

Esto implica que, en términos de la teoría de la relatividad especial, una condición necesaria para que A sea causa de B, es que B sea un evento que pertenece al cono de luz de A (en términos de distancias espacio-temporales se dice que A y B están separados por intervalo temporaloide). A pesar de algunas obras de ciencia ficción, en los supuestos bajo los cuales la teoría de la relatividad especial es adecuada para describir el mundo, resulta imposible, no sólo influir en el pasado, sino también en objetos distantes mediante señales que se muevan más rápidas que la velocidad de la luz.

En la teoría general de la relatividad, el concepto de causalidad se generaliza de la manera más directa posible: el efecto debe pertenecer al cono de luz futuro de su causa, aún en espacio-tiempos curvos; aunque pueden aparecer ciertas complicaciones, como cuando uno trata soluciones exactas de las ecuaciones de Einstein, como el Universo de Gödel, donde existen curvas temporales cerradas, y un observador puede verse a sí mismo en el pasado, y otra serie de peculiaridades que, no obstante, no incurren en ninguna paradoja.

Mecánica cuántica

Nuevas sutilezas se toman en cuenta cuando se investiga la causalidad en mecánica cuántica no relativista y teoría cuántica de campos (mecánica cuántica relativista). En la teoría cuántica de campos, la causalidad está estrechamente relacionada con el principio de localidad. El análisis de ese principio es delicado, y muchas veces ese análisis pasa por el uso del teorema de Bell. De todas maneras, el resultado de dicho análisis parece depender, en parte, de desde qué interpretación de la mecánica cuántica se interpreten los resultados.

Sin embargo, se sospecha que, aún con todas estas sutilezas, el principio de causalidad sigue siendo un concepto válido de toda teoría física realista. Así, parece que la noción de que los eventos pueden ser ordenados en causas y efectos es necesaria para prevenir ciertas paradojas del mundo que conocemos.

Causalidad y mecánica cuántica

El principio de causalidad en su forma original postula que todo efecto -todo evento- debe tener siempre una causa (que, en idénticas circunstancias, una causa tenga siempre un mismo efecto se conoce como "principio de uniformidad"). Se usa para la búsqueda de leyes definidas, que asignan a cada causa su correspondiente efecto.

Este principio refleja un comportamiento mecánico de la naturaleza, que hasta el siglo XX se había aceptado e interpretado en un sentido determinista. No obstante, a principios de este siglo Heisenberg y Born introdujeron el principio de incertidumbre y las probabilidades como ingrediente esencial de la mecánica cuántica. Entre los principios o postulados de la mecánica cuántica está el colapso de la función de onda que claramente no satisface el principio de causalidad clásico.

Teoría atómica

Heisenberg, Schrödigner y otros pioneros de la mecánica cuántica introdujeron un modelo de átomo que renunciaba a la visión clásica de un compuesto de partículas y ondas. En este y otros modelos cuánticos exitosos se apreció que cualquier intento de establecer analogías entre la estructura atómica y nuestra intuición sobre objetos macroscópicos estaba condenado al fracaso . La formulación matemática de la teoría de Heisenberg se llamó inicialmente mecánica matricial, porque requería del uso de las matrices del álgebra lineal clásica. Esta formulación resultó complementaria de la mecánica ondulatoria, del físico austriaco Erwin Schrödinger.

Usando esta mecánica, los niveles de energía u órbitas de electrones se describen en términos probabilísticos: en general, de una misma causa no se deriva siempre un mismo efecto, sino que existe una variedad de posibles efectos. Sólo se puede predecir (aunque, en principio, con una fiabilidad determinista total) la probabilidad de que, cuando la causa se produzca, ocurra cada uno de los efectos. Este comportamiento resulta extraño para nuestra experiencia ordinaria. Su explicación la podemos resumir en los siguientes puntos, que deben aceptarse como postulados avalados por miles de observaciones experimentales:

Existen propiedades de la materia (observables) que no se pueden medir simultáneamente (observables que no conmutan). Por ejemplo, la posición y la velocidad de una misma partícula sería un par de propiedades de este tipo. Para ilustrar esa situación con un análogo clásico burdo, piénsese que, si un microscopio es lo suficientemente sensible como para hacer visible un electrón, deberá enviar una cantidad mínima de luz u otra radiación apropiada sobre él, que lo haga visible. Pero el electrón es tan pequeño que este mínimo de radiación (digamos, un fotón) es suficiente para hacerle cambiar de posición apenas lo tocara, de modo que en el preciso instante de medir su posición, alteraríamos ésta.
Supongamos que hemos medido una de estas propiedades observables, de modo que conocemos con precisión su valor. Cuando un instante después midamos la segunda propiedad, obtendremos uno de los posibles valores de esta segunda propiedad, pero no podemos predecir antes cuál: sólo se puede predecir la probabilidad con la que cada uno de los valores posibles serán obtenidos.

Interpretación de Copenhague

Para algunos autores, desde el punto de vista filosófico, esto supone renunciar al principio de causalidad: podemos hallar dos sistemas físicos que han sido preparados exactamente del mismo modo, pero tales que, al medir una misma propiedad de ambos, obtenemos un resultado distinto en cada caso. No existe ninguna causa por la que hayamos obtenido los resultados diferentes: la naturaleza no es determinista. Sin embargo, sí se pueden determinar con precisión las probabilidades de obtener las posibles medidas. Y como los objetos macroscópicos están formados por números gigantescos de partículas, las predicciones probabilísticas cuánticas acaban siendo, estadísticamente hablando, totalmente precisas, lo que hace de la Mecánica Cuántica una teoría extraordinariamente exacta.

La interpretación descrita de la mecánica cuántica que se ha impuesto con el tiempo, se le llama Interpretación de Copenhague en honor de la escuela del físico danés Niels Bohr. Inicialmente, la renuncia al principio de causalidad en esta interpretación no fue aceptada por muchos físicos, incluyendo a Einstein, quien afirmó: “Dios no juega a los dados”. De hecho, el propio Einstein, en colaboración con Podolski y Rosen, ideó un experimento conocido como Argumento EPR (mal llamado Paradoja EPR), por las siglas de sus autores, presentando cinco ingredientes que son: la lógica clásica, el formulismo de la mecánica cuántica, una postura filosófica realista que podría ser aceptada incluso por un positivista moderado, la completitud del formalismo de la mecánica cuántica y la separabilidad (los ingredientes de lógica clásica y separabilidad están implícitos, pero no se los menciona, pues se los consideraba tan obvios y evidentes que no era necesario presentarlos). El argumento fue enfocado a demostrar la no completitud del formalismo de la mecánica cuántica. Bohr publicó otro trabajo con el mismo título, en el que se opuso a la conclusión del mismo, donde optó por negar la postura filosófica realista (débil) adoptada por la EPR, al proponer que la misma no es compatible con el formalismo de la mecánica cuántica, pues éste requiere una interpretación basada en la complementariedad.

Paradoja EPR y desigualdades de Bell

Alain Aspect dirigió diversos experimentos que buscaban comprobar si se satisfacían las llamadas desigualdades de Bell, sobre teorías locales de variables ocultas. Las desigualdades de Bell se deducen matemáticamente de varios principios: realismo y separabilidad del argumento EPR, además de introducir las variables ocultas de la Interpretación de Bohm. Análisis posteriores mostraron que también es posible deducir la desigualdad de Bell sin suponer la existencia de variables ocultas, o sea solamente requiriendo realismo y separabilidad. De aquí quedan dos opciones: abandonar el realismo como base filosófica o aceptar que la realidad tiene la característica de ser no-separable en ciertos casos.

Ni Bohr ni Einstein consideraron esta opción, porque en el momento histórico en que ellos actuaron nadie concebía la posibilidad de que la separabilidad no fuese válida. Hoy, a la luz de la violación experimental de las desigualdades de Bell, posiblemente ambos titanes se unirían para adoptar la no-separabilidad como la alternativa adecuada entre las planteadas por el argumento de EPR. Habría sido maravilloso ver a estos dos oponentes al fin reunidos: Bohr rechazando el positivismo. Einstein reconociendo la completitud, y ambos aceptando la no-separabilidad en la realidad física.

A pesar de la importancia del argumento EPR y de que, por haber sido publicado en 1935, anterior a la edición de casi todos los libros de texto, éstos, con raras excepciones, no mencionan dicho argumento. Su ausencia resalta aún más sorprendente si se tiene en cuenta que es extremadamente fácil de presentar, incluso en obras de divulgación, sin simplificaciones que lo desvirtúen. Todo esto hace pensar que el silencio en torno del argumento es intencional y que está motivado por una decisión de ignorar las dificultades de interpretación que aquejan a la mecánica cuántica. Tal intento por callar el problema no es neutro, sino que favorece a la interpretación "ortodoxa" de la teoría que se adoptó en sus principios, sustentada por la enorme autoridad, bien merecida, de Bohr, Heisenberg y otros de sus fundadores. Hoy, la mayoría de los físicos que investigan temas fundamentales de esta teoría no se adhieren a dicha interpretación y encuentran necesaria una actitud más crítica en la didáctica de la física cuántica.

La interpretación de Copenhague se enfrenta todavía a la llamada paradoja del gato de Schrödinger (remarquemos que Schrödinger, como Einstein, fue uno de los padres de la Mecánica Cuántica). Esta paradoja, que afecta a la definición de lo que es un proceso de medida (la distinción entre la materia observada y la mente del observador), no ha podido ser aún explicada de forma satisfactoria.

Existen multitud de efectos que se derivan del principio de incertidumbre. Uno de ellos, que afecta al ejemplo de incertidumbre posición-velocidad anterior, es la imposibilidad de la ausencia completa de energía cinética o, digamos, velocidad, para una partícula (ni siquiera en el cero absoluto). Si la energía cinética alcanzara el punto cero y las partículas quedaran totalmente inmóviles, sería posible confinarlas y determinar su posición con precisión arbitraria, a la vez que conoceríamos su velocidad (que sería cero). Por tanto, debe existir alguna “energía residual del punto cero”, incluso en el cero absoluto, para mantener las partículas en movimiento, y también, por así decirlo, nuestra incertidumbre. Esa energía “punto cero” se puede calcular, y resulta suficiente para evitar que el helio líquido se solidifique, incluso a temperaturas tan próximas como se quiera del cero absoluto (el cero en sí resulta inaccesible).

Las consecuencias del principio de incertidumbre se constatan en todas las partes de la microfísica, y acaban resultando asombrosas cuando se extrapolan al Universo en su conjunto. Así:

Desde los tiempos de Einstein, en 1930, se sabía que el principio de incertidumbre también llevaba a la imposibilidad de reducir el error en la medición de energía sin acrecentar la incertidumbre del tiempo durante el cual se toma la medida. (De hecho, al principio, Einstein creyó poder utilizar esta tesis como trampolín para refutar el principio de incertidumbre, pero también Bohr mostró que la tentativa de Einstein era errónea).
De esta versión de la incertidumbre se seguía que en un proceso subatómico se podía violar durante breves lapsos la ley de la conservación de la energía (siempre y cuando todo volviese al estado de conservación cuando concluyese ese lapso). En general, cuanto mayor sea la desviación de la conservación, tanto más breve será el intervalo de tiempo en que ésta es tolerable. El físico japonés Hideki Yukawa aprovechó esta noción para elaborar su teoría de los piones, confirmada experimentalmente.
Más aún, posibilitó la elucidación de ciertos fenómenos subatómicos presuponiendo que las partículas nacían de la nada como un reto a la energía de conservación, pero se extinguían antes del tiempo asignado a su detección, por lo cual eran sólo “partículas virtuales”. Hacia fines de la década 1940-1950, tres investigadores (premios Nobel de Física en 1965) elaboraron la teoría sobre esas partículas virtuales: los físicos norteamericanos Julian Schwinger y Richard Phillips Feynman, y el físico japonés Shin'ichirō Tomonaga. Los diagramas de Feynman son usados corrientemente en la física de partículas, donde llevan a predicciones extremadamente exactas.
A partir de 1976 se han producido especulaciones acerca de que el Universo comenzó como una pequeña pero muy masiva partícula virtual que se expandió con extrema rapidez y que aún sigue expandiéndose. Según este punto de vista, el Universo se formó de la Nada y podemos preguntarnos acerca de la posibilidad de que haya un número infinito de Universos que se formen (y, llegado el momento, acaben) en esta Nada.
En resumen, el principio de incertidumbre afectó profundamente al pensamiento de físicos y filósofos. Ejerció una influencia directa sobre la cuestión filosófica de causalidad, la relación entre causa y efecto. Pero sus implicaciones para la ciencia no son las que se suponen popularmente a menudo. Se puede leer que el principio de incertidumbre anula toda certeza acerca de la naturaleza, y muestra que, al fin y al cabo, la ciencia no sabe ni sabrá nunca hacia dónde se dirige, que el conocimiento científico está a merced de los caprichos imprevisibles de un Universo donde el efecto no sigue necesariamente a la causa. Pero tanto si esta interpretación es válida desde el ángulo filosófico como si no, el principio de incertidumbre no ha modificado un ápice la actitud del científico ante la investigación. Y esto por varios motivos:

La incertidumbre también existe a un nivel clásico. Por ejemplo, incluso si nos olvidamos de posibles efectos cuánticos, no se puede predecir con certeza el comportamiento de las moléculas individuales en un gas. Sin embargo, estas moléculas acatan ciertas leyes termodinámicas, y su conducta es previsible sobre una base estadística. Estas predicciones son infinitamente más precisas que las de las compañías aseguradoras, que planifican su actividad (y obtienen beneficios) calculando con índices de mortalidad fiables, aunque les sea imposible predecir cuándo morirá un individuo determinado.
Ciertamente, en muchas observaciones científicas, la incertidumbre es tan insignificante comparada con la escala correspondiente de medidas, que se la puede descartar para todos los propósitos prácticos. Uno puede determinar simultáneamente la posición y el movimiento de una estrella, o un planeta, o una bola de billar, o incluso un grano de arena con exactitud absolutamente satisfactoria.
La incertidumbre entre las propias partículas subatómicas no representa un obstáculo, sino una verdadera ayuda para los físicos. Se la ha empleado para entender el modelo atómico (que resultaba inestable desde el punto de vista no cuántico), esclarecer hechos sobre la radiactividad, sobre la absorción de partículas subatómicas por los núcleos, y otros muchos acontecimientos subatómicos. En ello se emplea una economía lógica y razonabilidad muy superior de lo que hubiera sido esperable sin él.
Es cierto que el principio de incertidumbre o, en general, la física cuántica, se enfrenta a la paradoja no resuelta del problema de la medición (el gato de Schrödinger). Pero ésta tiene sus orígenes en la distinción entre mente y materia, determinismo y libre albedrío, y profundiza en ella como nunca antes habían imaginado los filósofos. El principio de incertidumbre significa que el Universo es más complejo de lo que se suponía, pero no irracional.

Gravastar


En astrofísica, una estrella gravitacional de vacío o gravastar es una propuesta teórica de Pawel Mazur y Emil Mottola, para reemplazar a la de los agujeros negros. Los gravastars son una de las consecuencias de conjeturar que existen ciertas limitaciones físicas que impiden la formación de agujeros negros. La propuesta de Mazur y Mottola sugiere que el propio espacio llega a una transición de fase que evita el colapso y la formación de una singularidad interna.

La propuesta ha suscitado escaso interés entre los astrofísicos, porque aunque fue el título de una conferencia, sus autores no llegaron a publicar ningún artículo científico. La falta de interés viene del hecho de que el concepto requiere que uno acepte una teoría muy especulativa acerca de la cuantización de la gravedad, y, sin embargo, no tiene ninguna mejora real sobre la de los agujeros negros. Además, no hay una razón teórica en la cuantización de la gravedad que explique por qué el espacio debería comportarse de la manera que Mottola y Mazur indican.

Mazur y Mottola han sugerido que los gravastares podrían ser la solución a la paradoja de la información en los agujeros negros y que el gravastar podría ser una fuente de brotes de rayos gamma (BRG), añadiendo una más a las docenas, si no cientos de ideas que han sido propuesta como causa de los BRG. De todas formas, el consenso entre los astrofísicos es que hay maneras mucho menos radicales y especulativas para resolver los dos problemas mencionados.

Externamente, un gravastar parece similar a un agujero negro: es visible sólo por las emisiones de alta energía que crea al consumir materia. Los astrónomos observan el cielo buscando rayos X emitidos por la materia que absorben para detectar los agujeros negros, y un gravastar produciría una señal idéntica.

Dentro de un gravastar, el espacio-tiempo estaría totalmente detenido por las condiciones extremas existentes allí, produciendo una fuerza hacia el exterior. Alrededor de este vacío habría una "burbuja" en la cual el espacio en sí se comportaría como un bloque de materia. La idea de un comportamiento tal del espacio puede compararse con una forma extrema del condensado de Bose-Einstein en el cual toda la materia (protones, neutrones, electrones, etc.) se convierte en lo que se llama un estado cuántico creando un "súper-átomo".

Púlsar


Un púlsar (del acrónimo en inglés de pulsating star, que significa «estrella que emite radiación muy intensa a intervalos cortos y regulares») es una estrella de neutrones que emite radiación periódica. Los púlsares poseen un intenso campo magnético que induce la emisión de estos pulsos de radiación electromagnética a intervalos regulares relacionados con el periodo de rotación del objeto.

Las estrellas de neutrones pueden girar sobre sí mismas hasta varios cientos de veces por segundo; un punto de su superficie puede estar moviéndose a velocidades de hasta 70 000 km/s. De hecho, las estrellas de neutrones que giran tan rápidamente se expanden en su ecuador debido a esta velocidad vertiginosa. Esto también implica que estas estrellas tengan un tamaño de unos pocos miles de metros, entre 10 y 20 kilómetros, ya que la fuerza centrífuga generada a esta velocidad es enorme y sólo el potente campo gravitatorio de una de estas estrellas (dada su enorme densidad) es capaz de evitar que se despedace.

El efecto combinado de la enorme densidad de estas estrellas con su intensísimo campo magnético (generado por los protones y electrones de la superficie girando alrededor del centro a semejantes velocidades) causa que las partículas que se acercan a la estrella desde el exterior (como, por ejemplo, moléculas de gas o polvo interestelar), se aceleren a velocidades extremas y realicen espirales cerradísimas hacia los polos magnéticos de la estrella. Por ello, los polos magnéticos de una estrella de neutrones son lugares de actividad muy intensa. Emiten chorros de radiación en el rango del radio, rayos X o rayos gamma, como si fueran cañones de radiación electromagnética muy intensa y muy colimada.

Por razones aún no muy bien entendidas, los polos magnéticos de muchas estrellas de neutrones no están sobre el eje de rotación. El resultado es que los «cañones de radiación» de los polos magnéticos no apuntan siempre en la misma dirección, sino que rotan con la estrella.

Es posible entonces que, mirando hacia un punto determinado del firmamento, recibamos un «chorro» de rayos X durante un instante. El chorro aparece cuando el polo magnético de la estrella mira hacia la Tierra, deja de apuntarnos una milésima de segundo después debido a la rotación, y aparece de nuevo cuando el mismo polo vuelve a apuntar hacia la Tierra. Lo que percibimos entonces desde ese punto del cielo son pulsos de radiación con un periodo muy exacto, que se repiten una y otra vez (lo que se conoce como «efecto faro») cuando el chorro se orienta hacia nuestro planeta. Por eso, este tipo de estrellas de neutrones «pulsantes» se denominan púlsares (del inglés pulsating star, «estrella pulsante», aunque esta denominación se aplica con más propiedad a otro grupo de estrellas variables). Si la estrella está orientada de manera adecuada, podemos detectarla y analizar su velocidad de rotación. El periodo de la pulsación de estos objetos lógicamente aumenta cuando disminuye su velocidad de rotación. A pesar de ello, algunos púlsares con periodos extremadamente constantes han sido utilizados para calibrar relojes de precisión.

Descubrimiento del primer púlsar

La señal del primer púlsar detectado, PSR B1919+21, tenía un periodo de 1,33730113 s. Este tipo de señales únicamente se puede detectar con un radiotelescopio. De hecho, cuando en julio de 1967 Jocelyn Bell y Antony Hewish detectaron estas señales de radio de corta duración y extremadamente regulares, pensaron que podrían haber establecido contacto con una civilización extraterrestre, por lo que llamaron tentativamente a su fuente LGM (Little Green Men u Hombrecitos verdes). Tras una rápida búsqueda se descubrieron 3 nuevos púlsares que emitían en radio a diferentes frecuencias, por lo que pronto se concluyó que estos objetos debían ser producto de fenómenos naturales. Anthony Hewish recibió en 1974 el Premio Nobel de Física por este descubrimiento y por el desarrollo de su modelo teórico. Jocelyn Bell no recibió condecoración porque sólo era una estudiante de doctorado, aunque fuera ella quien advirtió la primera señal de radio.

Hoy en día se conocen más de 600 púlsares con periodos de rotación que van desde el milisegundo a unos pocos segundos, con un promedio de 0,65 s. La precisión con que se ha medido el periodo de estos objetos es de una parte en 100 millones. El más famoso de todos los púlsares es quizás el que se encuentra en el centro de la Nebulosa del Cangrejo, denominado PSR0531+121, con un periodo de 0,033 s. Este púlsar se encuentra en el mismo punto en el que astrónomos chinos registraron una brillante supernova en el año 1054 y permite establecer la relación entre supernova y estrella de neutrones, a saber, que ésta es remanente de la explosión de aquélla.

Planetas púlsar

En el primer grupo de planetas extrasolares descubiertos que orbitan un púlsar, el PSR B1257+12, cuyo periodo es de 6,22 ms (milisegundos). Las pequeñas variaciones de su periodo de emisión en el radio sirvieron para detectar una ligerísima oscilación periódica con una amplitud máxima en torno a 0,7 ms. Los radioastrónomos Aleksander Wolszczan y Dale A. Frail interpretaron estas observaciones como causadas por un grupo de tres planetas en órbitas casi circulares a 0,2, 0,36 y 0,47 ua del púlsar central y con masas de 0,02, 4,3 y 3,9 masas terrestres respectivamente. Este descubrimiento, muy inesperado, causó un gran impacto en la comunidad científica.

Púlsares de rayos X

Los púlsares de rayos x son sistemas de estrellas binarias que se componen de un púlsar y de una estrella normalmente joven de tipo O o B. La estrella primaria emite viento estelar de su superficie y radiación, y éstos son atrapados por la estrella compañera que produce rayos x. El primer púlsar de rayos X conocido es la estrella compacta situada en el sistema Cen X-3.