Um exoplaneta (ou planeta extrassolar (pré-AO 1990: extra-solar) ) é um planeta que orbita uma estrela que não seja o Sol e, desta forma, pertence a um sistema planetário distinto do nosso. Até 27 de fevereiro de 2016, havia 2 084 exoplanetas detectados.
Embora a existência de sistemas planetários há muito tenha sido aventada, até a década de 1990 nenhum planeta ao redor de estrelas da sequência principal havia sido descoberto. Todavia, desde então, algumas perturbações em torno da estrela atribuídas a exoplanetas gigantes vêm sendo descobertas com telescópios melhores. Mesmo por estimativas, as observações cada vez mais frequentes de exoplanetas gigantes reforçam a possibilidade de que alguns desses sistemas planetários possam conter planetas menores e consequentemente abrigar vida extraterrestre. A maioria dos exoplanetas possuem condições inóspitas à existência de vida tal como é concebida em nosso planeta. Os planetas detectados até agora são, em sua maioria, do tamanho ou maior do que Júpiter, e giram na maioria das vezes em órbitas muito próximas da estrela-mãe. Entretanto, os cientistas acreditam que isso se deve a limitações nas técnicas de detecção de planetas, e não porque essas condições sejam mais comuns.
História de detecções
A descoberta dos primeiros exoplanetas foi anunciada em 1989,quando variações nas velocidades radiais de HD 114762 e Alrai (γ Cephei) foram explicadas como efeitos gravitacionais causados por corpos de massa subestelar, possivelmente gigantes gasosos (11 MJ & 2-3 MJ respectivamente). Alrai foi analisada em um artigo no ano anterior, mas a questão de um companheiro planetário como causa das variações de velocidade foi deixada em aberto. Todavia, uma pesquisa subsequente em 1992 concluiu que os dados não eram robustos o bastante para confirmar a presença de um planeta,mas, dois anos depois, técnicas aperfeiçoadas confirmaram sua existência. O caso de HD 114762 ainda não foi refutado, mas considera-se que seu companheiro possa ser uma estrela de baixa massa em órbita vista de topo.
A primazia da descoberta dos primeiros exoplanetas também é requerida pelo astrônomo polaco Aleksander Wolszczan, que, em 1992, encontrou planetas ao redor do pulsar PSR B1257+12. Acredita-se que eles tenham sido formados dos remanescentes da supernova que produziu o pulsar, numa segunda rodada de formação planetária, ou de caroços sólidos dos restos de gigantes gasosos que sobreviveram à supernova e espiralaram as suas órbitas atuais.
Vários exoplanetas em redor de estrelas solares começaram a ser descobertos em grande número no fim da década de 1990 como resultado do aperfeiçoamento da tecnologia dos telescópios, tais como o advento dos CCDs e de processamento de imagens por computador.Tais avanços permitiram medições mais precisas do movimento estelar, possibilitando que os astrônomos detetassem planetas, não visualmente (porque a luminosidade de um planeta é geralmente muito baixa para ser detetada desta forma), mas através dos efeitos gravitacionais que exercem sobre as estrelas ao redor das quais orbitam . Exoplanetas também podem ser detetados através da variação da luminosidade aparente da estrela à medida que o planeta passa defronte dela.
O primeiro planeta extra-solar definitivo descoberto ao redor de uma estrela da sequência principal (51 Pegasi) foi anunciado em 6 de Outubro de 1995 por Michel Mayor e Didier Queloz da Universidade de Genebra. Desde então, dezenas de planetas foram descobertos e algumas suspeitas datadas do fim dos anos 1980 foram confirmadas, muitas pelo grupo liderado por Geoffrey Marcy, da Universidade da Califórnia, com dados obtidos nos observatórios Lick e Keck. O primeiro sistema a ter mais de um planeta detetado foi υ Andromedae. A maioria dos planetas detetados possuem órbitas muito elípticas.Todos os planetas até hoje descobertos possuem grande massa e a maioria tem massa superior à de Júpiter.
Em Julho de 2004, anunciou-se que o Hubble possibilitou a descoberta de cem exoplanetas adicionais, mas a presença deles ainda não pôde ser confirmada. Ademais, muitas observações apontam para a existência de milhões de cometas nesses sistemas extra-solares.
Até 27 de março de 2014, havia 1 779 exoplanetas detetados.
Em 13 de Novembro de 2008 foi anunciado por Paul Kalas, astrónomo da Universidade de Berkeley, que conseguiu pela primeira vez, através de um telescópio ótico, registar imagens de um exoplaneta. Para tal foi utilizada a técnica de eclipsamento artificial [carece de fontes], isto é, obstruindo a luz das estrelas mais próximas e possibilitando a visualização de seus planetas, muito menos luminosos. A referida imagem mostra o exoplaneta Fomalhaut b, provavelmente com uma massa aproximada à de Júpiter.
Na mesma ocasião, foi anunciada a descoberta, por astrônomos do Instituto de Astrofísica de Victoria, em British Columbia, de três planetas orbitando a estrela HR 8799.
Em Dezembro de 2008, três estudantes da Universidade de Leiden, nos Países Baixos, descobrem o primeiro exoplaneta a orbitar uma estrela quente e de rotação rápida. Meta de Hoon, Remco van der Burg e Francis Vuijsje estavam a testar um método de investigação da flutuação da luz por acção da gravidade, inserido na Optical Gravitational Lensing Experiment (OGLE),quando verificaram que a cada dois dias e meio a luminosidade de uma estrela decrescia na ordem dos 1% a 2%. Ao planeta foi atribuído o nome de OGLE2-TR-L9b possuindo uma massa cinco vezes superior à de Júpiter. A estrela à volta da qual orbita o planeta é 1000 °C a 7000 °C mais quente que o nosso Sol.
Métodos de deteção
Em 2008 havia seis métodos de deteção de planetas extrassolares que são muito débeis, com relação a sua estrelas hospedeiras, para serem detetados por métodos óticos convencionais.
As futuras missões espaciais Space Interferometry Mission, Terrestrial Planet Finder e Darwin planejam detectar exoplanetas de um modo mais direto.
Cronometria de Pulsares
O primeiro método usado para descobrir exoplanetas consistiu na observação de anomalias na regularidade dos pulsos de um pulsar. Isto levou à "descoberta" do primeiro planeta, que tinha período orbital de exatamente um ano. Essa descoberta foi, posteriormente, desmentida, uma vez que resultou da falha em considerar a Terra ao longo de sua órbita. Entretanto, este método de fato levou à descoberta dos primeiros planetas, bem como do primeiro sistema planetário além do nosso, por Aleksander Wolszczan. Também levou à descoberta do exoplaneta mais antigo que se conhece, pelo grupo de Steinn Sigurdsson, ao redor do pulsar binário PSR B1620-26. Este planeta é o único planeta conhecido que orbita ao redor de duas estrelas.
O método de cronometria de pulsares envolve medições precisas do sinal do pulsar de modo a determinar se há qualquer anomalia no período dos pulsos. Cálculos subsequentes são usados para determinar o que poderia causar essas anomalias. O método é comummente usado para detetar companheiros de pulsares, mas não é usado especificamente para encontrar planetas.
Astrometria
A astrometria consiste no método mais antigo para a busca de exoplanetas, usado pela primeira vez em 1943. Uma certa quantidade de estrelas candidatas foram encontradas desde então, mas não houve confirmação em nenhum desses casos, e muitos astrônomos desistiram desse método diante de outros mais bem-sucedidos. O método envolve a medição do movimento próprio da estrela em busca dos efeitos causados por seus planetas; todavia, variações no movimento próprio são tão pequenas que mesmo os melhores instrumentos de 2008 não fornecem medições confiáveis. O método requer que as órbitas dos planetas sejam aproximadamente perpendiculares a nossa linha de visada; desta forma, planetas detetados por esse método não puderam ser confirmados por outros métodos.
Velocidade radial
O método de velocidade radial mede variações na velocidade com a qual a estrela se afasta ou se aproxima de nós, i.e., mede a componente da velocidade estelar ao longo da linha de visada. A velocidade radial pode ser deduzida do deslocamento nas linhas espectrais da estrela hospedeira, devido ao efeito Doppler. Tais deslocamentos são induzidos pelo planeta que orbita a estrela, uma vez que ambos orbitam em torno do mesmo baricentro (ver problema de dois corpos). A velocidade da estrela ao redor do baricentro é muito menor do que aquela do planeta (os raios das órbitas e, portanto, as velocidades dos corpos são inversamente proporcionais à massa desses). Mesmo assim, variações de velocidades tão baixas quanto poucos metros por segundo podem ser detetadas.
Esta é a principal e, até 2008, mais bem-sucedida técnica usada por caçadores de planetas. Também é conhecida como "método Doppler". Mas ela funciona bem apenas para estrelas relativamente próximas, até 160 anos-luz. Ela encontra com facilidade planetas que estejam próximo à estrela, mas tem dificuldade em encontrar aqueles que orbitam a distâncias maiores. O método Doppler pode ser usado para confirmar as descobertas empreendidas através do método de trânsito.
Microlente gravitacional
O efeito de microlente gravitacional acontece quando os campos gravitacionais de um planeta e o da estrela hospedeira agem de modo a magnificar a luz de uma estrela distante que esteja no fundo do céu. Para que o efeito ocorra, o planeta e a estrela devem passar quase diretamente entre a estrela distante e o observador. Uma vez que esses eventos são raros, um número muito grande de estrelas distantes deve ser continuamente monitorado de modo a permitir a deteção de planetas a uma taxa razoável. Além disso, também não é possível repetir os experimentos que utilizam esse método, devido à raridade com que ocorrem. Este é o método mais promissor para planetas localizados entre a Terra e o centro da galáxia, já que as partes centrais da galáxia fornecem um grande número de estrelas distantes de fundo.
Método de trânsito
Um método recentemente desenvolvido detecta a sombra do planeta quando este transita diante da estrela hospedeira. Este "método de trânsito" funciona apenas com uma pequena porcentagem de planetas cujos planos orbitais estejam perfeitamente alinhados com nossa linha de visada, mas pode ser aplicado mesmo a estrelas muito distantes. Espera-se que ele levará à descoberta dos primeiros planetas terrestres ao redor de estrelas solares quando for empregado pelo Telescópio Espacial CoRoT e pelo Observatório Kepler, missão especial da NASA.
Disco circunstelar
Discos de poeira estelar circundam muitas estrelas, e estas podem ser detectadas, pois absorvem a luz visível da estrela e reemitem como radiação infravermelha. Condensações em determinados pontos do disco sugerem a presença de planetas.
Novas descobertas da Sonda Kepler
Recentemente a sonda espacial Kepler localizou, pelo método de trânsito, mais de 1230 candidatos a exoplanetas. Destes, mais de 80 são iguais à Terra, sendo 5 deles situados na zona habitável, ou seja, a região ao redor de uma estrela onde é possível a existência de água em estado líquido.Planetas orbitando estrelas são mais comuns do que se imaginava. No início de 2011, um estudo baseado em informações da Kepler concluiu que a Via Láctea pode ter cerca de 2000 milhões de planetas com tamanho semelhante ao da Terra, havendo ainda, possivelmente, cerca de 50000 milhões de galáxias no universo observável.
Similares à Terra
Astrônomos identificaram os dois menores exoplanetas mais similares à Terra localizados fora do Sistema Solar.Esses orbitam em torno da estrela Kepler-20 situada cerca de mil anos-luz de nosso planeta na constelação da Lyra. Para chegar-se a esses planetas usando a nave espacial mais veloz existente seriam necessários mais de 4 milhões de anos. Tais planetas, Kepler-20 e Kepler-20 f, têm, respetivamente diâmetros 1,03 e 0,87 vezes o da terra. Até então o menor exoplaneta localizado fora do sistema solar era Kepler-10b, com diâmetro 1,42 vezes o da terra.
O Dr. François Fressin, do Harvard-Smithsonian Center for Astrophysics de Cambridge (Massachusetts) que lidera a equipe de pesquisadores que localizou os planetas, declarou:
"O primeiro desses planetas tem um diâmetro somente 3% maior que o da Terra, o que o faz o objeto mais similar à Terra em todo o Universo. O segundo tem seu diâmetro 13% menor que o da Terra, cerca de 7000 milhas (~ 11 300 km), sendo também menor que Vênus, sendo de fato o menor corpo planetário já localizado em órbita de qualquer outra estrela similar ao Sol."
Os maiores descobridores de exoplanetas, os astrofísicos William Borucki, Stéphane Udry e Geoffrey Marcy, localizaram mais da metade dos 767 desses corpos celestes já localizados. Essas buscas se iniciaram na década de 1970, cresceu na seguinte e deslanchou definitivamente em 1995, quando o astrofísico suíço Michel Mayor encontrou o primeiro desses distantes corpos celestes, 51 Pegasi b, a 50 anos-luz da Terra, constelação de Pegasus.
Dos 767 exoplanetas localizados até 2012, somente quatro têm possibilidade de serem habitados, pois orbitam a tais distâncias das estrelas que permitiriam a presença de água líquida na sua superfície. Três deles foram descobertos pelo astrofísico suíço Stéphane Udry, diretor do Observatório da Universidade de Genebra:
Gliese 667 Cc – em Scorpius a 22 anos-luz da Terra, 85% de similaridade.
Kepler-22b – em Cygnus a 600 anos-luz da Terra, similaridade 81%.
HD 85512 b – em Vela a 36 anos-luz da Terra, similaridade 77%
Gliese 581 d em Libra a 20 anos-luz da Terra, similaridade 71%.
Até 2015, cerca de 12 planetas que tinham semelhanças à Terra haviam sido descobertos anteriormente nas zonas habitáveis, mas, "Kepler 452b" é diferente porque ele é o mais semelhante sistema Terra-Sol encontrado. Um comunicado da NASA disse: "Um planeta na temperatura certa dentro da zona habitável, e apenas cerca de uma e meia vezes o diâmetro da Terra, circulando uma estrela muito parecida com o nosso Sol." Junto com "Kepler 452b", a missão também encontrou outros 11 pequenos planetas na zona habitável.