Un cuásar o quasar (acrónimo: Fuente de Radio Cuasi- Estelar en inglés de quasi-stellar radio source) es una fuente astronómica de energía electromagnética, que incluye radiofrecuencias y luz visible.
Generalidades
Los cuásares visibles muestran un desplazamiento al rojo muy alto. El consenso científico dice que esto es un efecto de la expansión métrica del universo entre los cuásares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los cuásares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los cuásares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernovas y brotes de rayos gamma. Los cuásares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de un billón de soles.
En un principio se supuso que los objetos cuasi-estelares o cuásares eran agujeros blancos aunque el avance del estudio de su formación y características ha descartado tal supuesto.
En telescopios ópticos, la mayoría de los cuásares aparecen como simples puntos de luz, aunque algunos parecen ser los centros de galaxias activas. La mayoría de los cuásares están demasiado lejos para ser vistos por telescopios pequeños, pero el 3C 273, con una magnitud aparente de 12,9 es una excepción. A una distancia de 2440 millones de años luz, es uno de los objetos más lejanos que se pueden observar directamente con un equipo amateur.
Algunos cuásares muestran cambios rápidos de luminosidad, lo que implica que son pequeños, ya que un objeto no puede cambiar más rápido que el tiempo que tarda la luz en viajar desde un extremo al otro. El corrimiento al rojo más alto conocido de un cuásar es de 6,4.
Se cree que los cuásares están alimentados por la acreción de materia de agujeros negros supermasivos en el núcleo de galaxias lejanas, convirtiéndolos en versiones muy luminosas de una clase general de objetos conocida como galaxias activas. No se conoce el mecanismo que parece explicar la emisión de la gran cantidad de energía y su variabilidad rápida. El conocimiento de los cuásares ha avanzado muy rápidamente, aunque no hay un consenso claro sobre sus orígenes.
Propiedades de los cuásares
Se conocen más de 200 000 cuásares y todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los cuásares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc (780 millones de años luz) y el más lejano a 6 Gpc (13 000 millones de años luz). La mayoría de los cuásares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuásares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.
Aunque aparecen débiles cuando se observan por telescopios ópticos, su corrimiento al rojo alto implica que estos objetos se sitúan a grandes distancias, por lo que hace de los cuásares los objetos más luminosos en el universo conocido. El cuásar que aparece más brillante en el cielo es el 3C 273 de la constelación de Virgo. Está a una distancia de ~670 millones de parsecs, o sea, en torno a 2200 millones de años luz. Tiene una magnitud aparente de 12,8, lo suficientemente brillante para ser observado desde un telescopio pequeño, pero su magnitud absoluta es de -26,7. A una distancia de 10 pársecs (unos 33 años luz), este objeto brillaría en el cielo con mayor fuerza que el Sol. La luminosidad de este cuásar es unos dos billones (2 × 1012) de veces mayor que la del Sol, o cien veces más que la luz total de una galaxia media como la Vía Láctea.
El cuásar hiperluminoso APM 08279+5255 tenía, cuando se descubrió en 1998, una magnitud absoluta de -32,2, aunque las imágenes de alta resolución del telescopio espacial Hubble y el telescopio Keck revelaron que este sistema era una lente gravitacional. Un estudio del fenómeno de lente gravitacional en este sistema sugiere que se ha aumentado en un factor de 10. Se trata, de todas formas, de un objeto más luminoso que los cuásares más cercanos como el 3C 273. Se piensa que el HS 1946+7658 tiene una magnitud absoluta de -30,3, pero que también ha sido aumentada por el efecto de lente gravitacional.
Se ha descubierto que los quásares varían de luminosidad en escalas de tiempo diversas. Algunas varían su brillo cada algunos meses, semanas, días u horas. Esta evidencia ha permitido a los científicos teorizar que los cuásares generan y emiten su energía desde una región muy pequeña, puesto que cada parte del quásar debería estar en contacto con las otras en tal escala de tiempo para coordinar las variaciones de luminosidad. Como tal, un cuásar que varía en una escala de tiempo de algunas semanas no puede ser mayor que algunas semanas luz de ancho.
Los cuásares manifiestan muchas propiedades idénticas a las de las galaxias activas: la radiación no es térmica y se ha observado que algunas tienen jets y lóbulos como las radiogalaxias. Los cuásares pueden ser observados en muchas zonas del espectro electromagnético como radiofrecuencia, infrarrojos, luz visible, ultravioletas, rayos X e incluso rayos gamma. La mayoría de los cuásares son más brillantes en el marco de referencia de ultravioleta cercano, cerca de la línea Lyman-alfa de emisión del hidrógeno de 1216 Å o (121,6 nm), pero debido a su corrimiento al rojo, ese punto de luminosidad se observa tan lejos como 9000 Å (900 nm) en el infrarrojo cercano.
Generación de emisión
Ya que los cuásares muestran propiedades en común con todas las galaxias activas, muchos científicos han comparado las emisiones de los cuásares con aquellas de galaxias activas pequeñas debido a su similitud. La mejor explicación para los cuásares es que están alimentados por agujeros negros supermasivos. Para crear una luminosidad de 1040 W (el brillo típico de un quásar), un agujero negro supermasivo debería consumir la materia equivalente a diez estrellas por año. Los quásares más brillantes conocidos deberían devorar 1000 masas solares de materia cada año. Se cree que los quásares se «encienden» y «apagan» dependiendo de su entorno. Una implicación es que un cuásar no continuaría alimentándose a esa velocidad durante 10 000 millones de años, lo que explicaría satisfactoriamente por qué no hay cuásares cercanos. En este marco, después de que un cuásar acabase de consumir el gas y el polvo, se convertiría en una galaxia normal.
Los cuásares también proporcionan algunas pistas sobre el fin de la reionización del Big Bang. Los quásares más viejos (z > 4) muestran un efecto Gunn-Peterson y tienen zonas de absorción en el frente de ellos indicando que el medio intergaláctico en ese momento era gas neutro. Los quásares más recientes no muestran zonas de absorción, pero en su lugar, sus espectros muestran una parte puntiaguda conocida como bosque Lyman-alfa. Esto indica que el medio intergaláctico está sometido a una reionización hacia plasma y que el gas neutro solo existe en cúmulos pequeños.
Otra característica interesante de los quásares es que muestran evidencias de elementos más pesados que el helio. Esto significa que esas galaxias estuvieron sometidas a una fase masiva de formación estelar creando estrellas de población III entre el momento del Big Bang y los primeros quásares observados. La luz de esas estrellas pudo haber sido observada por el telescopio espacial Spitzer de la NASA, aunque a finales de 2005 esta interpretación aguardaba ser confirmada.
Historia de la observación de cuásares
Los primeros cuásares fueron descubiertos con radiotelescopios a finales de los años 1950. Muchos fueron registrados como fuentes de radio que no tenía un objeto visible correspondiente. Utilizando telescopios pequeños y el telescopio Lovell como un interferómetro, los objetos mostraban que tenía un tamaño angular muy pequeño.4 Cientos de estos objetos fueron registrados hacia 1960 y se publicó el Tercer Catálogo de Cambridge de Radio-fuentes (3C) mientras los astrónomos exploraban el cielo con telescopios ópticos. En 1960, la fuente de radio 3C 48 fue finalmente vinculada con un objeto óptico. Los astrónomos detectaron lo que parecía una estrella azul tenue en la posición de la fuente de radio y obtuvieron su espectro: conteniendo muchas líneas de emisión desconocidas, el espectro anómalo resistía una interpretación.
En 1962 se consiguió un avance destacado. Otra fuente de radio, la 3C 273, fue pronosticada para sufrir cinco ocultaciones por la Luna. La medidas obtenidas por Cyril Hazard y John Bolton durante una de las ocultaciones utilizando el Observatorio de Parkes permitió a Maarten Schmidt una identificación óptica del objeto y obtener su espectro visible con el telescopio Hale de Monte Palomar. Este espectro reveló las mismas líneas de emisión extrañas. Schmidt se dio cuenta que se trataba de las líneas del espectro del hidrógeno con un corrimiento al rojo del 15,8 %. Este descubrimiento mostraba que la 3C 273 se estaba alejando a una velocidad de 47 000 km/s.5 Este descubrimiento revolucionó la observación de quásares y permitía a otros astrónomos buscar corrimientos al rojo en las líneas de emisión de otras fuentes de radio. La 3C 48 mostró tener un corrimiento al rojo del 37 % de la velocidad de la luz.
El término cuásar (en inglés, quasar) fue acuñado por el astrofísico estadounidense de origen chino, Hong-Yee Chiu, en 1964, en Physics Today, para describir estos objetos extraños:
Hasta el momento, el torpemente largo nombre de 'quasi-stellar radio sources' [fuentes de radio casi estelares] se ha utilizado para describir estos objetos. Debido a que la naturaleza de estos objetos es completamente desconocida, es difícil preparar una nomeclatura corta y apropiada para ellos ya que sus propiedades esenciales son obvias en su nombre. Por conveniencia, la forma abreviada ‘quasar’ se utilizará durante este artículo
Hong-Yee Chiu en Physics Today, mayo de 1964
Más tarde se descubrió que no todos los cuásares, alrededor de sólo un 10 %, tenían emisiones de radio altas (los radio-intenso). Por lo tanto, el nombre de QSO (Objeto cuasi-estelar) se utiliza para referirse a estos objetos, incluyendo las clase radio-intensa (RLQ) y radio-silenciosa (RQQ).
Un tema de debate durante los años 1960 fue si los cuásares eran objetos cercanos o lejanos como implicaba su corrimiento al rojo. Se sugirió que el corrimiento al rojo de los cuásares no era debido al efecto Doppler sino a que la luz escapaba de un muro gravitacional. Sin embargo, se creía que una estrella de suficiente masa para formar tal muro, sería inestable.6 Los quásares también mostraban unas líneas de emisión inusuales que sólo se habían visto anteriormente en nebulosas de baja densidad de gas caliente, lo que sería demasiado difuso para generar la energía observada y mantenerse dentro del muro gravitacional.Hubo también preocupaciones serias respecto la idea cosmológica de los quásares lejanos. Un argumento firme contra esto es que las energías implicadas en los quásares excedían todos los procesos de conversión de energía conocidos, incluyendo la fusión nuclear. En ese momento, hubo algunas sugerencias sobre que los cuásares eran alguna forma desconocida de antimateria estable y que eso podía influir en su brillo. Esta objeción se eliminó con la propuesta del mecanismo del disco de acrecimiento en los años setenta, y en la actualidad la distancia cosmológica de los quásares es aceptada por el consenso científico.
En 1979, el efecto de lente gravitacional pronosticado por la Teoría General de la Relatividad de Einstein fue confirmado por la observación por primera vez con imágenes del doble cuásar 0957+561.8
En la década de 1980, se desarrollaron modelos unificados en el que los cuásares fueron vistos como una clase de galaxias activas, y había emergido en un consenso general que en la mayoría de los casos era el ángulo de visión lo que distinguía unas clases de otras, como los blazars y las radiogalaxias. Se creía que la luminosidad elevada de los quásares era el resultado de la fricción causada por el gas y el polvo cayendo en los discos de acrecimiento de agujeros negros supermasivos, que podían convertir un 10 % de masa de un objeto en energía, a diferencia del 0,7 % obtenido en procesos de fusión nuclear que dominan la producción de energía en estrellas solares.
Este mecanismo también se cree que explica por qué los quásares eran más comunes al comienzo del universo, ya que esta producción de energía finaliza cuando el agujero negro supermasivo consume todo el gas y polvo que tiene cerca. Esto significa que es posible que la mayoría de las galaxias, incluyendo la Vía Láctea, ha pasado a través de una etapa activa, apareciendo como un quásar u otra clase de galaxia activa dependiente de la masa del agujero negro y la rotación de acrecimiento, y que son inactivos ahora debido a la falta de materia para alimentar sus agujeros negros centrales que generan la radiación.
APM 08279+5255
El APM 08279+5255 es un cuásar hiperluminoso, tenía, cuando se descubrió en 1998, una magnitud absoluta de -32,2, aunque las imágenes de alta resolución del telescopio espacial Hubble y el telescopio Keck revelaron que este sistema era una lente gravitacional. Un estudio del fenómeno de lente gravitacional en este sistema sugiere que se ha aumentado en un factor de 10. Se trata, de todas formas, de un objeto más luminoso que los quasares más cercanos como por ejemplo el 3C 273.
En julio del 2011, la revista Astrophysical Journal Letters, ha publicado el hallazgo de lo que hasta el momento se configura como la mayor reserva de agua en el Universo. El descubrimiento se debe a un grupo de astrónomos del Jet Propulsion Laboratory (JPL) de la NASA y del California Institute of Technology (CALTECH).
quarta-feira, 4 de maio de 2016
Meteorologia
A meteorologia é uma das ciências que estudam a atmosfera terrestre, que tem como foco o estudo dos processos atmosféricos e a previsão do tempo. Estuda os fenômenos que ocorrem na atmosfera e as interações entre seus estados dinâmicos, físico e químico, com a superfície terrestre subjacente.
Os estudos no campo da meteorologia foram iniciados há mais de dois milênios, mas apenas a partir do século XVII a meteorologia progrediu significativamente. No século seguinte, o desenvolvimento da meteorologia ganhou um ímpeto ainda mais significativo com o desenvolvimento de redes de intercâmbio de dados em vários países. Com a maior eficiência na observação da atmosfera e uma mais rápida troca de dados meteorológicos, as primeiras previsões numéricas do tempo tornaram-se possíveis com o desenvolvimento de modelos meteorológicos no início do século XX. A invenção do computador e da Internet tornou mais rápido e mais eficaz o processamento e o intercâmbio de dados meteorológicos, proporcionando assim um maior entendimento dos eventos meteorológicos e suas variáveis e, conseqüentemente, tornou possível uma maior precisão na previsão do tempo.
A palavra "meteorologia" vem do grego μετέωρος metéōros "elevado; alto (no céu)" (de μετα- meta- "acima" e ἀείρω aeiro "eu levanto") e -λογία -logia "estudo, palavra".
O foco de estudo da meteorologia é a investigação dos fenômenos observáveis relacionados com a atmosfera. Os eventos atmosféricos que são observáveis somente em um amplo período de tempo são o foco de estudo da climatologia. Os fenômenos meteorológicos estão relacionados com variáveis que existem na atmosfera, que são principalmente a temperatura, a pressão atmosférica e a umidade do ar, suas relações e as suas variações com o passar do tempo. A maior parte dos eventos meteorológicos ocorre na troposfera, a camada mais baixa da atmosfera terrestre, e podem afetar o planeta Terra como um todo ou afetar apenas uma pequena região, e para isso a meteorologia é subdividida para melhor estudar os eventos meteorológicos em escala global, ou eventos estritamente locais.
A meteorologia faz parte de um conjunto de ciências atmosféricas. Faz parte deste conjunto a climatologia, a física atmosférica, que visa às aplicações da física na atmosfera, e a química atmosférica, que estuda os efeitos das reações químicas decorrentes na atmosfera. A própria meteorologia pode se tornar uma ciência interdisciplinar quando se funde, por exemplo, com a hidrologia, tornando-se a hidrometeorologia, que estuda o comportamento das chuvas numa determinada região, ou pode se fundir com a oceanografia, tornando-se a meteorologia marítima, que visa ao estudo da relação dos oceanos com a atmosfera.
As aplicações da meteorologia são bastante amplas. O planejamento da agricultura é dependente da meteorologia. A política energética de um país dependente de sua bacia hidrográfica também pode depender das previsões do tempo. Estratégias militares e a construção civil também dependem da meteorologia, e a previsão do tempo influencia o cotidiano de toda a sociedade.
Povos antigos prediziam o tempo com base na observação dos astros. Por meio do movimento do Sol, das estrelas e dos planetas, os antigos egípcios podiam prever as estações e as cheias do rio Nilo, tão essenciais para a sobrevivência do povo egípcio. Entretanto, a história da meteorologia pode ser traçada a partir da Grécia Antiga. Aristóteles é considerado o pai da meteorologia, e em 350 a.C., escreveu o livro “meteorológica”,onde descreve com razoável precisão o que nós conhecemos atualmente como o ciclo da água, e esboçou que o planeta é dividido em cinco zonas climáticas: a região tórrida em torno do equador, duas zonas frígidas nos pólos e duas zonas temperadas.No século IX, o naturalista curdo Al-Dinawari escreve o Livro das Plantas, onde detalha as aplicações da meteorologia na agricultura;naquele momento histórico o mundo islâmico vivia uma revolução agrícola significativa.Al-Dinawari, no seu livro, descreve o céu, os planetas, as constelações, o Sol e a Lua, as fases lunares e destacou as estações secas e úmidas. Também detalhou fenômenos meteorológicos, como o vento, tempestades, raios, neves, enchentes, vales, rios, lagos, poços e outras fontes de água.
Em 1021, o árabe Alhazen escreveu sobre a refração atmosférica da luz e mostrou que a refração atmosférica da luz solar acontece apenas quando o disco solar está a 18° ou menos abaixo da linha do horizonte.Com base nisto, Alhazen, utilizando também recursos complexos de geometria, concluiu que a altura da atmosfera terrestre deveria ser de aproximadamente 79 km, o que é bastante razoável com os resultados atuais. Alhazen também concluiu que a atmosfera reflete a luz, pelo fato de que as estrelas menos brilhantes do céu começam a desaparecer quando o sol ainda está 18° abaixo da linha do horizonte, indicando o término do crepúsculo ou o início do amanhecer.Em 1121, Al-Khazini, cientista muçulmano de origem greco-bizantina, publicou o Livro do Equilíbrio da Sabedoria, o primeiro estudo sobre o equilíbrio hidrostático.No século XIII, o germânico Alberto Magno foi o primeiro a propor que cada gota de chuva tinha a forma de uma pequena esfera, e que esta forma significa que o arco-íris é produzido pela luz que interage com cada gotícula de chuva.O filósofo inglês Roger Bacon foi o primeiro a calcular o tamanho angular do arco-íris e afirmou que o topo do arco-íris não pode se erigir mais do que 42° acima do horizonte.No final do século XIII e início do século XIV, o alemão Teodorico de Freiberg e o persa Kamal al-Din al-Farisi continuaram o trabalho de Alhazen, e foram os primeiros a dar as explicações coerentes para o fenômeno do arco-íris. Entretanto, Teodorico vai mais longe e explica também o arco-íris secundário.
Em 1441, o filho do rei coreano Sejong, o príncipe Munjong, inventou o primeiro pluviômetro padronizado. Vários pluviômetros foram enviados em todo o território dominado pela dinastia Joseon como uma ferramenta oficial para o recolhimento de impostos, com base no potencial de colheita que uma área fértil poderia oferecer.Em 1450, o italiano Leone Battista Alberti desenvolveu um anemômetro de placa oscilante, que ficou conhecido como o primeiro registro histórico de um instrumento capaz de medir a velocidade do vento.Em 1494, Cristóvão Colombo experimenta em sua navegação um ciclone tropical, o que leva ao primeiro relato escrito por um europeu de um furacão.Em 1592, Galileu Galilei construiu o primeiro termoscópio, que via a elevação de uma coluna de óleo num tubo capilar com a elevação da temperatura.Em 1611, Johannes Kepler escreve o primeiro tratado científico sobre cristais de neve: Strena Seu de Nive Sexangula ("Neve Hexagonal, uma Dádiva de Ano Novo").Em 1643, o italiano Evangelista Torricelli inventou o barômetro de mercúrio.Em 1648, o francês Blaise Pascal redescobre que a pressão atmosférica diminui com a altura, e deduz que existe um vácuo acima da atmosfera.Em 1654, Ferdinando II de Medici estabeleceu a primeira rede de observação do tempo, que consistia de estações meteorológicas em Florença, Cutigliano, Vallombrosa, Bolonha, Parma, Milão, Innsbruck, Osnabrück, Paris e Varsóvia. Os dados coletados eram enviados para a central em Florença, em intervalos regulares de tempo.Em 1662, o inglês Christopher Wren inventou o pluviômetro basculante de drenagem automática.Em 1686, o inglês Edmund Halley apresenta um estudo sistemático dos ventos alísios e das monções e identifica o aquecimento solar como a causa dos movimentos atmosféricos.Em 1716, Halley sugere que auroras boreais e austrais são causadas por "eflúvios magnéticos" que se deslocam ao longo das linhas do campo magnético da Terra.
Em 1714, o alemão Gabriel Fahrenheit cria uma escala confiável para medir a temperatura com um termômetro de mercúrio.Em 1735, o inglês George Hadley elabora uma explicação ideal para a circulação atmosférica global por meio do estudo dos ventos alísios.Em 1738, o holandês Daniel Bernoulli publicou o livro Hidrodinâmica, iniciando a teoria cinética dos gases e estabeleceu as leis fundamentais da teoria dos gases.Em 1742, o astrônomo sueco Anders Celsius sugere que a escala centígrada para a medição da temperatura seria mais adequada, o que seria o antecessor da escala Celsius atual.No ano seguinte, quando o americano Benjamin Franklin é impedido de assistir a um eclipse lunar por um furacão, Franklin concluiu que os furacões se locomovem no sentido contrário de seus ventos.Em 1761, o escocês Joseph Black descobriu que o gelo absorve calor sem alterar sua temperatura no momento da fusão.Em 1772, o estudante Daniel Rutherford descobre o nitrogênio, que ele chama de "ar flogistado", que seria o resíduo gasoso de uma combustão, segundo a teoria do flogisto.Em 1777, o francês Antoine Lavoisier descobriu o oxigênio e desenvolve uma explicação para a combustão,e no seu livro de 1783, intitulado Réflexions sur le phlogistique, Lavoisier despreza a teoria do flogisto e propõe uma teoria calórica.
Ainda em 1783, o primeiro higrômetro de cabelo é apresentado pelo suíço Horace-Bénédict de Saussure.Em 1802-1803, o inglês Luke Howard escreve o livro Sobre a Modificação das Nuvens em que ele atribui nomes latinos aos vários tipos de nuvem.Em 1804, o escocês John Leslie observa que uma superfície negra e fosca irradia calor com mais eficiência do que uma superfície polida, o que sugere a importância da radiação de corpo negro; comportamento da atmosfera depende também do calor irradiado pelos continentes e oceanos. Em 1806, o inglês Francis Beaufort introduziu seu sistema de classificação da velocidade do vento, conhecido atualmente como escala Beaufort.Em 1808, o inglês John Dalton defende a teoria calórica em um novo sistema químico, e descreve as combinações da matéria, especialmente gases, e ainda propõe que a capacidade térmica dos gases varia inversamente com o peso atômico.Em 1824, o francês Nicolas Léonard Sadi Carnot analisa a eficiência dos motores a vapor usando a teoria calórica e desenvolve a noção de reversibilidade e, ao postular que tal coisa não existe na natureza, estabelece as bases para a segunda lei da termodinâmica.A chegada do telégrafo elétrico em 1837 permitiu, pela primeira vez, um método prático para a rápida coleta de dados meteorológicos de superfície de uma grande área. Tais dados poderiam ser usados para produzir mapas atmosféricos de superfície e estudar como a atmosfera evolui ao longo do tempo.Para fazer sucessivas previsões meteorológicas com base nesses dados, seria necessária uma rede confiável de observação atmosférica, mas isso não foi possível até 1849, quando o Smithsonian Institute começou a estabelecer uma rede de observação nos Estados Unidos sob a liderança de Joseph Henry.
Redes semelhantes de observação atmosférica foram estabelecidas na Europa nesta época. Em 1854, o Governo do Reino Unido designou Robert FitzRoy para o novo escritório do Meteorological Statist to the Board of Trade, com o papel de reunir observações meteorológicas no mar.O escritório de FitzRoy tornou-se a Agência Meteorológica do Reino Unido em 1854, o primeiro serviço nacional de meteorologia em todo o mundo.Em 1856, o americano William Ferrel propôs a existência de uma célula de circulação em latitudes médias, e o ar seria então defletido para leste para criar os ventos do oeste.
No final do século XIX, toda a extensão da interação em larga escala da força de gradiente de pressão e força de deflexão, que faz com que as massas de ar se movam ao longo de isóbaras, foi entendida.Ainda neste momento, os primeiros atlas de nuvens foram publicados, incluindo o International Cloud Atlas, que se ativo na imprensa desde então. As primeiras previsões diárias do tempo diárias feitas pelo escritório de FitzRoy foram publicadas no jornal The Times em 1860. No ano seguinte foi introduzido um sistema de aviso de tempestades, baseado em içamento de cones, nos principais portos ingleses. Durante a segunda metade do século XIX, muitos países estabeleceram serviços meteorológicos nacionais. O Departamento Meteorológico da Índia (1875) foi fundado como consequência da passagens de sucessivos ciclones tropicais e severas monções, que estiveram relacionados com a fome nas décadas anteriores.O Escritório Central Finlandês de Meteorológica (1881) foi fundado como parte do Observatório Magnético da Universidade de Helsinque.O Observatório Meteorológico do Japão em Tóquio foi o precursor da Agência Meteorológica do Japão e iniciou a elaboração de mapas meteorológicos de superfície em 1883.A Agência de Meteorologia dos Estados Unidos (1890) foi estabelecida sob a tutela do Departamento de Agricultura dos Estados Unidos.A Agência Australiana dos Estados Unidos (1906) foi estabelecida por lei para unificar os serviços meteorológicos estaduais existentes.
Em 1904, o cientista norueguês Vilhelm Bjerknes foi o primeiro a argumentar em seu artigo A Previsão do Tempo como um Problema de Mecânica e de Física que a previsão do tempo deveria ser possível a partir de cálculos baseados em leis naturais.Mas apenas no final do século XX que os avanços na compreensão da física atmosférica levaram à fundação da previsão numérica do tempo.A compreensão cinemática de como exatamente a rotação da Terra afeta a circulação atmosférica global ainda não era completa no século XIX. O francês Gustave-Gaspard Coriolis publicou um artigo em 1835 sobre a produção de energia das máquinas com peças rotacionais, tais como rodas d'água.Entretanto, somente em 1912 descobriu-se a presença desta força na atmosfera.Logo após a Primeira Guerra Mundial, um grupo de meteorologistas na Noruega, liderada por Vilhelm Bjerknes, desenvolveu o modelo norueguês de ciclones, que explica a geração, intensificação e o final do ciclo de vida de ciclones extratropicais, introduzindo a idéia de frentes, ou seja, as fronteiras bem definidas entre as massas de ar.O grupo norueguês de pesquisas meteorológicas incluía Carl-Gustaf Rossby, que foi o primeiro a explicar o escoamento atmosférico em grande escala segundo a dinâmica de fluidos,Tor Bergeron, quem determinou pela primeira vez o mecanismo pelo qual se forma a chuva, e Jacob Bjerknes. Em 1922, o inglês Lewis Fry Richardson publicou Previsão do Tempo por Processos Numéricos, após reunir notas e derivações durante o período no qual ele trabalhou como motorista de ambulância na Primeira Guerra Mundial. Richardson observou que pequenos termos nos prognósticos das equações envolvendo a dinâmica de fluidos na atmosfera terrestre poderiam ser desprezados, e de como soluções numéricas do tempo poderiam ser encontrados ao relacionar graficamente as variáveis atmosféricas no tempo e espaço. Entretanto, o grande número de cálculos necessários era grande demais para ser concluído sem o uso de computadores, e o tamanho da rede meteorológica e a distância entre uma estação meteorológica e outra, além dos grandes intervalos de tempo utilizados nos cálculos levaram a resultados pouco realísticos nas análises de fenômenos meteorológicos em fortalecimento. Mais tarde, concluiu-se que tais resultados pouco realísticos eram devido às instabilidades numéricas.
A partir de 1950, tornaram-se viáveis as previsões numéricas por meio de computadores. As primeiras previsões do tempo derivadas de operações computacionais usaram modelos barotrópicos, ou seja, usavam apenas a variáveis da pressão atmosférica, que prediziam com razoável sucesso a evolução de áreas de alta ou baixa pressão.
Em 1960, a natureza caótica da atmosfera foi observada pela primeira vez e matematicamente descrita por Edward Lorenz, fundador da teoria do caos.Estes avanços levaram ao uso atual da previsão conjunta na maioria dos grandes centros de previsão, e a levar em conta a incerteza decorrente da natureza caótica da atmosfera. Nos últimos anos, modelos climáticos têm sido desenvolvidos, que apresentam uma resolução comparável aos antigos modelos de previsão do tempo. Tais modelos climáticos são usados para investigar mudanças climáticas em longo prazo, tais como os efeitos que podem ser causados por emissões humanas de gases do efeito estufa.No abril daquele ano, foi lançado com sucesso o primeiro satélite meteorológico de sucesso, o TIROS-1, e marcou início da era em que as informações meteorológicas tornaram-se disponíveis a nível global.
História da meteorologia no Brasil
Pode-se traçar o início da meteorologia no Brasil em 1781, com a campanha de medições meteorológicas no Rio de Janeiro e São Paulo lançadas pelos portugueses Francisco de Oliveira Barbosa e Bento Sanchez d'Orta.No ano da chegada da família real portuguesa ao Rio de Janeiro, 1808, a Marinha do Brasil criou o primeiro observatório meteorológico brasileiro.Em 1845, o observatório astronômico instituído em 1827 por D. Pedro I torna-se o Imperial Observatório do Rio de Janeiro,mas é passado às mãos do cientista francês Emanuel Liais em 1871.O belga Lu´ss Cruls, que assumiu a direção do observatório em 1881,publicou o primeiro grande trabalho científico sobre o clima brasileiro, com base em 40 anos de observações meteorológicas no Rio de Janeiro.Em 1849, o cearense Osvaldo Weber iniciou um trabalho de coletas de dados meteorológicos referentes à quantidade de chuvas no Nordeste Brasileiro a fim de se avaliar as dimensões das secas.Em Curitiba, foi instalado o primeiro observatório meteorológico fora do Rio de Janeiro em 1884.Em 1892 e 1893, Porto Alegre e Manaus também instalam novos observatórios meteorológicos.Em 1888, a Marinha do Brasil instala a primeira rede meteorológica brasileira,e em 1890, surge o primeiro serviço meteorológico de abrangência nacional.
Em 1909, é criada a Diretoria de Meteorologia e Astronomia, ligada ao Ministério da Agricultura.Em 1917, inicia-se de fato a previsão do tempo no Brasil com a elaboração dos primeiros mapas meteorológicos sinópticos, abrangendo inicialmente o estado do Rio de Janeiro com enfoque especial no Distrito Federal.A meteorologia do Brasil viu uma grande explosão de desenvolvimento após 1921, quando a Diretoria de Meteorologia se desmembra da Astronomia e ficou sob a administração de Sampaio Ferraz. Novos observatórios foram instalados, com equipamentos mais modernos, incluindo radiossondas e adotando a previsão numérica do tempo.ntretanto, a partir de 1930, o desenvolvimento meteorológico estagnou-se, com o sucateamento dos observatórios e dos equipamentos meteorológicos, e o desinteresse na formação de novos profissionais na área.
Apenas em 1958 surgiu o primeiro curso de meteorologia no Brasil, dois meses antes do surgimento da Sociedade Brasileira de Meteorologia.O primeiro curso de meteorologia de nível superior viria a ocorrer seis anos depois, na Universidade do Brasil, atual Universidade Federal do Rio de Janeiro.
História da meteorologia em Portugal
As primeiras manifestações da meteorologia como ciência em Portugal foram as observações meteorológicas realizadas pelo médico Tomás Heberden, no Funchal, entre 1747 e 1753.Entretanto, o primeiro observatório meteorológico português foi construído somente um século depois, que viria a ser chamado de Instituto do Infante D. Luís.Em 1865, inicia-se o serviço diário de previsão do tempo, e os boletins eram enviados aos jornais locais. Neste mesmo ano, começaram a ser içados sinais de tempo ruim em várias estações semafóricas.
No primeiro ano do século XX, foi instituído o Serviço Meteorológico dos Açores, extinto em 1946 com a criação do Serviço Meteorológico Nacional de Portugal.Com o advento da previsão numérica do tempo, houve a necessidade da atualização de equipamentos meteorológicos, e o primeiro sistema de radiossondagem veio a funcionar em 1930, mas o primeiro radar meteorológico português foi instalado em Lisboa em 1969.
O Serviço Meteorológico Nacional viria a ser desativado em 1976, e na sua reestruturação veio a ser chamado de Instituto Nacional de Meteorologia e Geofísica,e de Instituto de Meteorologia, I. P. em 1993.A instalação de estações meteorológicas automáticas viria a ocorrer somente em 1991.
Equipamentos
Cada ciência tem seu próprio conjunto de equipamentos laboratoriais. Na atmosfera terrestre, há uma grande variedade de informações a ser obtidas. A chuva, que pode ser observada ou vista em qualquer lugar e a qualquer hora, foi um das primeiras variáveis meteorológicas a ser medida historicamente. Mesmos as variáveis atmosféricas que não eram vistas diretamente, mas apenas sentidas, já eram conhecidas até o século XVIII; Ferdinando II de Medici já havia inventado o termômetro, para medir a temperatura, Evangelista Torricelli inventou o barômetro,Leone Battista Alberti havia inventado o primeiro anemômetro mecânico e Horace-Bénédict de Saussure inventou o primeiro higrômetro de cabelo tencionado, para medir a umidade do ar.
A coleta de dados numéricos da atmosférica é imprescindível para os meteorologistas. Podem revelar as condições meteorológicas instantâneas ou mesmo as condições futuras. Para a coleta de dados meteorológicos de uma localidade qualquer, é normalmente utilizado uma estação meteorológica, onde estão reunidos todos os equipamentos meteorológicos necessários. Para a coleta de dados meteorológicos em mares e oceanos, uma estação meteorológica pode estar embarcada num navio ou numa boia meteorológica. Entretanto, as medições meteorológicas de superfície não são suficientes. Para a coleta de dados meteorológicos da alta troposfera, faz-se necessário a utilização de radiossondas (balões meteorológicos), radares meteorológicos e estações meteorológicas embarcadas em aeronaves. Os radares meteorológicos realizaram a coleta de dados meteorológicos remotamente, mas o sensoriamento remoto também pode ser feito através de laser (LIDAR) ou por meio da visualização meteorológica feita por satélites meteorológicos.
Os equipamentos meteorológicos mais comuns utilizados em uma estação meteorológica são:
Anemômetros ou anemógrafos - para medir a velocidade do vento;
Barômetros ou barógrafos - para medir a pressão atmosférica;
Evaporímetros (de tanque ou porosos) - para medir o grau de evaporação de água numa superfície;
Heliógrafos - para medir a duração do brilho solar;
Higrômetros, higrógrafos, termo-higrógrafos ou psicrômetros - para medir a umidade do ar;
Pluviômetros ou pluviógrafos - para medir a precipitação pluvial (chuva);
Piranômetro ou piranógrafos - para medir a intensidade da radiação solar;
Termômetros, termógrafos, termo-higrômetros, termômetro de máxima e de mínima e termômetros de solo - para medir a temperatura ambiente ou para registrar a sua variação.
Áreas da meteorologia
No estudo da atmosfera, a meteorologia pode ser dividida em várias áreas de estudo, dependendo da abrangência temporal, ou da abrangência espacial de interesse. A ciência que estuda a atmosfera por um prolongado período de tempo é a climatologia. Por outro lado, considerando a meteorologia a ciência que estuda os fenômenos físicos da atmosfera terrestre num pequeno período de tempo, desde segundos a dias, a meteorologia separa-se em micrometeorologia, mesometeorologia e a meteorologia sinóptica. Respectivamente, o tamanho geoespacial de cada uma destas três escalas está relacionamento diretamente com os períodos de tempo envolvidos.
Micrometeorologia
A meteorologia de microescala, a micrometeorologia, é o estudo da atmosfera numa região com menos de 1 ou 2 km de extensão, em geral associada à Camada Limite Atmosférica (CLA), que é a camada inferior da troposfera junto a superfície. A micrometeorologia enfoca seu estudo nos fenômenos na CLA, incluindo os fluxos de energia que se definem na interface superfície-atmosfera, sobre as campanhas experimentais intensivas de medição, estudos e investigações da turbulência atmosférica, nas inter-relações dos fenômenos da CLA com tempestades individuais, nuvens em geral, e na dinâmica de escoamentos complexos associados às heterogeneidades superficiais (rugosidade, fluxos de calor), à presença de construções, colinas e outros obstáculos.
Meteorologia de mesoescala
A meteorologia de mesoescala é o estudo dos fenômenos atmosféricos que ocorrem dentro dos limites da escala sinóptica, mas que também ocorre verticalmente em toda a troposfera, podendo alcançar a tropopausa ou mesmo a camada mais inferior da estratosfera. O período de tempo de estudo de fenômenos meteorológicos de mesoescala pode abranger um dia ou várias semanas. Os eventos meteorológicos mais comuns estudados pela meteorologia de mesoescala são tempestades, linhas de instabilidade, frentes, e bandas de precipitação em ciclones tropicais e extratropicais. Além disso, a meteorologia de mesoescala estuda os fenômenos meteorológicos gerados pela orografia, como a brisa ou ondas estacionárias.
Meteorologia sinótica
A meteorologia sinótica é o estudo da atmosfera terrestre em grande escala, sendo possível a observações de alterações sinóticas (de pressão atmosférica) horizontais e os eventos meteorológicos associados. Os fenômenos atmosféricos que são explicados pela meteorologia sinótica incluem ciclones tropicais e extratropicais, zonas frontais, correntes de jato, bloqueios atmosféricos e as ondas de Rossby. Todos estes fenômenos podem ser descritos em um mapa meteorológico dentro de um período de tempo específico. A extensão mínima de estudo da atmosfera feita pela meteorologia sinótica é a distancia entre estações meteorológicas.
Meteorologia de escala global
A meteorologia de escala global é o estudo dos padrões atmosféricos relacionados ao transporte de calor dos trópicos aos polos. Oscilações periódicas da atmosfera em grande escala também é o alvo de estudo da meteorologia de escala global. Tais oscilações podem abranger um período de tempo maior do que um ano, como os efeitos do El Niño.
A meteorologia é uma ciência interdisciplinar, ou seja, pode-se aliar com outras ciências para que o processo da dinâmica da atmosfera possa ser mais entendida. Além disso, existem ainda outras subclassificações da meteorologia para aprofundamento do entendimento dos fenômenos meteorológicos.
Meteorologia física, que estuda os processos físicos envolvidos na formação dos eventos meteorológicos. A meteorologia física pode ser divida em várias outras subclassificações, desde a termodinâmica atmosfera, que faz parte do estudo da atmosfera dentro do estudo da mecânica dos fluídos, até o comportamento caótico da atmosfera;
Hidrometeorologia, que é o estudo da evolução da água existente na atmosfera em suas diversas formas: estado sólido (granizo, gelo, neve), líquido (chuva, orvalho) ou de vapor (ciclo de evaporação).
Agrometeorologia, que trata da interferência do clima e do tempo na agronomia.
Biometeorologia, que estuda a interação entre os seres vivos e a atmosfera, tais como os efeitos da poluição do homem e efeitos do clima sobre a vegetação a e biodiversidade em espaços de tempo curtos. A sensação térmica é alvo de estudo da biometeorologia.
Meteorologia aeronáutica e a meteorologia náutica ou marítima tratam de aplicações das pesquisas meteorológicas e climatológicas para melhorias no setor aéreo e náutico.
Meteorologia de latitudes médias, que se dedica a estudar os processos e fenômenos atmosféricos que ocorrem entre 23° e 60° de latitude.
Meteorologia tropical, que estuda os processos e os fenômenos atmosféricos típicos das regiões tropicais (entre 0° e 23°).
Meteorologia urbana, que estuda a ilha de calor urbana, a camada limite urbana, o conforto ambiental dos cidadãos, entre outros.
Aplicações
A previsão do tempo é uma das aplicações da meteorologia para prever o estado da atmosfera em um tempo futuro e em um determinado local. A humanidade tem tentado prever o tempo por milênios, mas a meteorologia começou a ser empregada para as previsões do tempo a partir do século XIX. As previsões meteorológicas são feitas através da coleta de dados sobre o estado atual da atmosfera terrestre, e com a compreensão científica dos processos atmosféricos para projetar como o tempo irá evoluir.
A plataforma principal para a previsão numérica do tempo é a análise da pressão atmosférica e as causas de sua mudança, além de seus desdobramentos.Para isso, foram criados modelos meteorológicos capazes de acompanhar o movimento das massas de ar com diferentes pressões atmosféricas, as suas relações (gradientes de pressão), além de associar a temperatura e a umidade do ar. Tais modelos meteorológicos são capazes de determinar o comportamento da atmosfera para um curto período de tempo no futuro
No entanto, não é possível, com a atual tecnologia, prever todos os desdobramentos da atmosfera; a atmosfera apresenta um comportamento caótico, isto é, um pequeno fator, que pode ser menor do que a margem de erro dos dados numéricos, pode desencadear eventos imprevisíveis.Para minimizar tais erros, é necessário uma massiva coleta de dados numéricos, e as suas interconexões são processadas por supercomputadores. Entretanto, a dinâmica da atmosfera ainda não é totalmente compreendida, e a previsão torna-se cada vez mais imprecisa conforme se aumenta o período de tempo no futuro; os modelos meteorológicos atuais são capazes de prever certos eventos apenas em um período de quinze dias no futuro, e os modelos climáticos não podem prever eventos que poderão vir a ocorrer a mais de oito meses no futuro. Para amenizar os erros, vários modelos meteorológicos são usados em conjunto, estabelecendo-se um consenso entre estes modelos.
Há uma grande variedade de finalidades para a previsão do tempo. Os avisos de tempo severo são importantes para preservar a vida humana e a economia. As previsões baseadas na temperatura e precipitação são importantes na agricultura. A previsão da temperatura também é importante na previsão, por exemplo, da demanda da energia elétrica ou de água para os dias vindouros. O cotidiano das pessoas pode ser alterado conforme a previsão do tempo. As atividades ao ar livre, como a construção civil, também são influenciadas pela previsão do tempo.
Aviação
A meteorologia aeronáutica é de vital importância para o controle do tráfego aéreo. A presença de tempestades e de regiões de cisalhamento do vento pode desviar aeronaves de suas rotas originais.
Agricultura
Meteorologistas, em conjunto com cientistas do solo, hidrologistas e agrônomos, tem como um dos campos de estudo os efeitos dos eventos meteorológicos na agricultura. Os eventos meteorológicos e climáticos podem determinar a localização das principais plantações de um determinado produto agrícola, o rendimento agrícola, a eficiência do uso da água, a fenologia e o balanço energético dos ecossistemas artificiais ou naturais. Além disso, também há o estudo do papel da vegetação, que pode incluir os efeitos da agricultura, para o clima local ou mesmo para a formação de eventos meteorológicos.
Hidrometeorologia
A hidrometeorologia é o ramo da meteorologia que lida com o ciclo hidrológico, com o balanço hídrico e com os dados estatísticos de chuvas. Os hidrometeorologistas preparam e emitem previsões de acumulação (quantitativo) de precipitação (chuva e neve), e destacam as regiões que podem vir a sofrer com as enchentes.
Meteorologia marítima
A meteorologia marítima tem como foco o acompanhamento de sistemas severos no oceano, além da altura das ondas, para a segurança de navios. Institutos como o Centro de Previsão Oceânica, dos Estados Unidos, o escritório do Serviço Nacional de Meteorologia dos Estados Unidos em Honolulu, Havaí, a Met Office (Agência Meteorológica do Reino Unido e a Agência Meteorológica do Japão, entre outros, prepararam boletins regulares do tempo em alto mar.
Os estudos no campo da meteorologia foram iniciados há mais de dois milênios, mas apenas a partir do século XVII a meteorologia progrediu significativamente. No século seguinte, o desenvolvimento da meteorologia ganhou um ímpeto ainda mais significativo com o desenvolvimento de redes de intercâmbio de dados em vários países. Com a maior eficiência na observação da atmosfera e uma mais rápida troca de dados meteorológicos, as primeiras previsões numéricas do tempo tornaram-se possíveis com o desenvolvimento de modelos meteorológicos no início do século XX. A invenção do computador e da Internet tornou mais rápido e mais eficaz o processamento e o intercâmbio de dados meteorológicos, proporcionando assim um maior entendimento dos eventos meteorológicos e suas variáveis e, conseqüentemente, tornou possível uma maior precisão na previsão do tempo.
A palavra "meteorologia" vem do grego μετέωρος metéōros "elevado; alto (no céu)" (de μετα- meta- "acima" e ἀείρω aeiro "eu levanto") e -λογία -logia "estudo, palavra".
O foco de estudo da meteorologia é a investigação dos fenômenos observáveis relacionados com a atmosfera. Os eventos atmosféricos que são observáveis somente em um amplo período de tempo são o foco de estudo da climatologia. Os fenômenos meteorológicos estão relacionados com variáveis que existem na atmosfera, que são principalmente a temperatura, a pressão atmosférica e a umidade do ar, suas relações e as suas variações com o passar do tempo. A maior parte dos eventos meteorológicos ocorre na troposfera, a camada mais baixa da atmosfera terrestre, e podem afetar o planeta Terra como um todo ou afetar apenas uma pequena região, e para isso a meteorologia é subdividida para melhor estudar os eventos meteorológicos em escala global, ou eventos estritamente locais.
A meteorologia faz parte de um conjunto de ciências atmosféricas. Faz parte deste conjunto a climatologia, a física atmosférica, que visa às aplicações da física na atmosfera, e a química atmosférica, que estuda os efeitos das reações químicas decorrentes na atmosfera. A própria meteorologia pode se tornar uma ciência interdisciplinar quando se funde, por exemplo, com a hidrologia, tornando-se a hidrometeorologia, que estuda o comportamento das chuvas numa determinada região, ou pode se fundir com a oceanografia, tornando-se a meteorologia marítima, que visa ao estudo da relação dos oceanos com a atmosfera.
As aplicações da meteorologia são bastante amplas. O planejamento da agricultura é dependente da meteorologia. A política energética de um país dependente de sua bacia hidrográfica também pode depender das previsões do tempo. Estratégias militares e a construção civil também dependem da meteorologia, e a previsão do tempo influencia o cotidiano de toda a sociedade.
Povos antigos prediziam o tempo com base na observação dos astros. Por meio do movimento do Sol, das estrelas e dos planetas, os antigos egípcios podiam prever as estações e as cheias do rio Nilo, tão essenciais para a sobrevivência do povo egípcio. Entretanto, a história da meteorologia pode ser traçada a partir da Grécia Antiga. Aristóteles é considerado o pai da meteorologia, e em 350 a.C., escreveu o livro “meteorológica”,onde descreve com razoável precisão o que nós conhecemos atualmente como o ciclo da água, e esboçou que o planeta é dividido em cinco zonas climáticas: a região tórrida em torno do equador, duas zonas frígidas nos pólos e duas zonas temperadas.No século IX, o naturalista curdo Al-Dinawari escreve o Livro das Plantas, onde detalha as aplicações da meteorologia na agricultura;naquele momento histórico o mundo islâmico vivia uma revolução agrícola significativa.Al-Dinawari, no seu livro, descreve o céu, os planetas, as constelações, o Sol e a Lua, as fases lunares e destacou as estações secas e úmidas. Também detalhou fenômenos meteorológicos, como o vento, tempestades, raios, neves, enchentes, vales, rios, lagos, poços e outras fontes de água.
Em 1021, o árabe Alhazen escreveu sobre a refração atmosférica da luz e mostrou que a refração atmosférica da luz solar acontece apenas quando o disco solar está a 18° ou menos abaixo da linha do horizonte.Com base nisto, Alhazen, utilizando também recursos complexos de geometria, concluiu que a altura da atmosfera terrestre deveria ser de aproximadamente 79 km, o que é bastante razoável com os resultados atuais. Alhazen também concluiu que a atmosfera reflete a luz, pelo fato de que as estrelas menos brilhantes do céu começam a desaparecer quando o sol ainda está 18° abaixo da linha do horizonte, indicando o término do crepúsculo ou o início do amanhecer.Em 1121, Al-Khazini, cientista muçulmano de origem greco-bizantina, publicou o Livro do Equilíbrio da Sabedoria, o primeiro estudo sobre o equilíbrio hidrostático.No século XIII, o germânico Alberto Magno foi o primeiro a propor que cada gota de chuva tinha a forma de uma pequena esfera, e que esta forma significa que o arco-íris é produzido pela luz que interage com cada gotícula de chuva.O filósofo inglês Roger Bacon foi o primeiro a calcular o tamanho angular do arco-íris e afirmou que o topo do arco-íris não pode se erigir mais do que 42° acima do horizonte.No final do século XIII e início do século XIV, o alemão Teodorico de Freiberg e o persa Kamal al-Din al-Farisi continuaram o trabalho de Alhazen, e foram os primeiros a dar as explicações coerentes para o fenômeno do arco-íris. Entretanto, Teodorico vai mais longe e explica também o arco-íris secundário.
Em 1441, o filho do rei coreano Sejong, o príncipe Munjong, inventou o primeiro pluviômetro padronizado. Vários pluviômetros foram enviados em todo o território dominado pela dinastia Joseon como uma ferramenta oficial para o recolhimento de impostos, com base no potencial de colheita que uma área fértil poderia oferecer.Em 1450, o italiano Leone Battista Alberti desenvolveu um anemômetro de placa oscilante, que ficou conhecido como o primeiro registro histórico de um instrumento capaz de medir a velocidade do vento.Em 1494, Cristóvão Colombo experimenta em sua navegação um ciclone tropical, o que leva ao primeiro relato escrito por um europeu de um furacão.Em 1592, Galileu Galilei construiu o primeiro termoscópio, que via a elevação de uma coluna de óleo num tubo capilar com a elevação da temperatura.Em 1611, Johannes Kepler escreve o primeiro tratado científico sobre cristais de neve: Strena Seu de Nive Sexangula ("Neve Hexagonal, uma Dádiva de Ano Novo").Em 1643, o italiano Evangelista Torricelli inventou o barômetro de mercúrio.Em 1648, o francês Blaise Pascal redescobre que a pressão atmosférica diminui com a altura, e deduz que existe um vácuo acima da atmosfera.Em 1654, Ferdinando II de Medici estabeleceu a primeira rede de observação do tempo, que consistia de estações meteorológicas em Florença, Cutigliano, Vallombrosa, Bolonha, Parma, Milão, Innsbruck, Osnabrück, Paris e Varsóvia. Os dados coletados eram enviados para a central em Florença, em intervalos regulares de tempo.Em 1662, o inglês Christopher Wren inventou o pluviômetro basculante de drenagem automática.Em 1686, o inglês Edmund Halley apresenta um estudo sistemático dos ventos alísios e das monções e identifica o aquecimento solar como a causa dos movimentos atmosféricos.Em 1716, Halley sugere que auroras boreais e austrais são causadas por "eflúvios magnéticos" que se deslocam ao longo das linhas do campo magnético da Terra.
Em 1714, o alemão Gabriel Fahrenheit cria uma escala confiável para medir a temperatura com um termômetro de mercúrio.Em 1735, o inglês George Hadley elabora uma explicação ideal para a circulação atmosférica global por meio do estudo dos ventos alísios.Em 1738, o holandês Daniel Bernoulli publicou o livro Hidrodinâmica, iniciando a teoria cinética dos gases e estabeleceu as leis fundamentais da teoria dos gases.Em 1742, o astrônomo sueco Anders Celsius sugere que a escala centígrada para a medição da temperatura seria mais adequada, o que seria o antecessor da escala Celsius atual.No ano seguinte, quando o americano Benjamin Franklin é impedido de assistir a um eclipse lunar por um furacão, Franklin concluiu que os furacões se locomovem no sentido contrário de seus ventos.Em 1761, o escocês Joseph Black descobriu que o gelo absorve calor sem alterar sua temperatura no momento da fusão.Em 1772, o estudante Daniel Rutherford descobre o nitrogênio, que ele chama de "ar flogistado", que seria o resíduo gasoso de uma combustão, segundo a teoria do flogisto.Em 1777, o francês Antoine Lavoisier descobriu o oxigênio e desenvolve uma explicação para a combustão,e no seu livro de 1783, intitulado Réflexions sur le phlogistique, Lavoisier despreza a teoria do flogisto e propõe uma teoria calórica.
Ainda em 1783, o primeiro higrômetro de cabelo é apresentado pelo suíço Horace-Bénédict de Saussure.Em 1802-1803, o inglês Luke Howard escreve o livro Sobre a Modificação das Nuvens em que ele atribui nomes latinos aos vários tipos de nuvem.Em 1804, o escocês John Leslie observa que uma superfície negra e fosca irradia calor com mais eficiência do que uma superfície polida, o que sugere a importância da radiação de corpo negro; comportamento da atmosfera depende também do calor irradiado pelos continentes e oceanos. Em 1806, o inglês Francis Beaufort introduziu seu sistema de classificação da velocidade do vento, conhecido atualmente como escala Beaufort.Em 1808, o inglês John Dalton defende a teoria calórica em um novo sistema químico, e descreve as combinações da matéria, especialmente gases, e ainda propõe que a capacidade térmica dos gases varia inversamente com o peso atômico.Em 1824, o francês Nicolas Léonard Sadi Carnot analisa a eficiência dos motores a vapor usando a teoria calórica e desenvolve a noção de reversibilidade e, ao postular que tal coisa não existe na natureza, estabelece as bases para a segunda lei da termodinâmica.A chegada do telégrafo elétrico em 1837 permitiu, pela primeira vez, um método prático para a rápida coleta de dados meteorológicos de superfície de uma grande área. Tais dados poderiam ser usados para produzir mapas atmosféricos de superfície e estudar como a atmosfera evolui ao longo do tempo.Para fazer sucessivas previsões meteorológicas com base nesses dados, seria necessária uma rede confiável de observação atmosférica, mas isso não foi possível até 1849, quando o Smithsonian Institute começou a estabelecer uma rede de observação nos Estados Unidos sob a liderança de Joseph Henry.
Redes semelhantes de observação atmosférica foram estabelecidas na Europa nesta época. Em 1854, o Governo do Reino Unido designou Robert FitzRoy para o novo escritório do Meteorological Statist to the Board of Trade, com o papel de reunir observações meteorológicas no mar.O escritório de FitzRoy tornou-se a Agência Meteorológica do Reino Unido em 1854, o primeiro serviço nacional de meteorologia em todo o mundo.Em 1856, o americano William Ferrel propôs a existência de uma célula de circulação em latitudes médias, e o ar seria então defletido para leste para criar os ventos do oeste.
No final do século XIX, toda a extensão da interação em larga escala da força de gradiente de pressão e força de deflexão, que faz com que as massas de ar se movam ao longo de isóbaras, foi entendida.Ainda neste momento, os primeiros atlas de nuvens foram publicados, incluindo o International Cloud Atlas, que se ativo na imprensa desde então. As primeiras previsões diárias do tempo diárias feitas pelo escritório de FitzRoy foram publicadas no jornal The Times em 1860. No ano seguinte foi introduzido um sistema de aviso de tempestades, baseado em içamento de cones, nos principais portos ingleses. Durante a segunda metade do século XIX, muitos países estabeleceram serviços meteorológicos nacionais. O Departamento Meteorológico da Índia (1875) foi fundado como consequência da passagens de sucessivos ciclones tropicais e severas monções, que estiveram relacionados com a fome nas décadas anteriores.O Escritório Central Finlandês de Meteorológica (1881) foi fundado como parte do Observatório Magnético da Universidade de Helsinque.O Observatório Meteorológico do Japão em Tóquio foi o precursor da Agência Meteorológica do Japão e iniciou a elaboração de mapas meteorológicos de superfície em 1883.A Agência de Meteorologia dos Estados Unidos (1890) foi estabelecida sob a tutela do Departamento de Agricultura dos Estados Unidos.A Agência Australiana dos Estados Unidos (1906) foi estabelecida por lei para unificar os serviços meteorológicos estaduais existentes.
Em 1904, o cientista norueguês Vilhelm Bjerknes foi o primeiro a argumentar em seu artigo A Previsão do Tempo como um Problema de Mecânica e de Física que a previsão do tempo deveria ser possível a partir de cálculos baseados em leis naturais.Mas apenas no final do século XX que os avanços na compreensão da física atmosférica levaram à fundação da previsão numérica do tempo.A compreensão cinemática de como exatamente a rotação da Terra afeta a circulação atmosférica global ainda não era completa no século XIX. O francês Gustave-Gaspard Coriolis publicou um artigo em 1835 sobre a produção de energia das máquinas com peças rotacionais, tais como rodas d'água.Entretanto, somente em 1912 descobriu-se a presença desta força na atmosfera.Logo após a Primeira Guerra Mundial, um grupo de meteorologistas na Noruega, liderada por Vilhelm Bjerknes, desenvolveu o modelo norueguês de ciclones, que explica a geração, intensificação e o final do ciclo de vida de ciclones extratropicais, introduzindo a idéia de frentes, ou seja, as fronteiras bem definidas entre as massas de ar.O grupo norueguês de pesquisas meteorológicas incluía Carl-Gustaf Rossby, que foi o primeiro a explicar o escoamento atmosférico em grande escala segundo a dinâmica de fluidos,Tor Bergeron, quem determinou pela primeira vez o mecanismo pelo qual se forma a chuva, e Jacob Bjerknes. Em 1922, o inglês Lewis Fry Richardson publicou Previsão do Tempo por Processos Numéricos, após reunir notas e derivações durante o período no qual ele trabalhou como motorista de ambulância na Primeira Guerra Mundial. Richardson observou que pequenos termos nos prognósticos das equações envolvendo a dinâmica de fluidos na atmosfera terrestre poderiam ser desprezados, e de como soluções numéricas do tempo poderiam ser encontrados ao relacionar graficamente as variáveis atmosféricas no tempo e espaço. Entretanto, o grande número de cálculos necessários era grande demais para ser concluído sem o uso de computadores, e o tamanho da rede meteorológica e a distância entre uma estação meteorológica e outra, além dos grandes intervalos de tempo utilizados nos cálculos levaram a resultados pouco realísticos nas análises de fenômenos meteorológicos em fortalecimento. Mais tarde, concluiu-se que tais resultados pouco realísticos eram devido às instabilidades numéricas.
A partir de 1950, tornaram-se viáveis as previsões numéricas por meio de computadores. As primeiras previsões do tempo derivadas de operações computacionais usaram modelos barotrópicos, ou seja, usavam apenas a variáveis da pressão atmosférica, que prediziam com razoável sucesso a evolução de áreas de alta ou baixa pressão.
Em 1960, a natureza caótica da atmosfera foi observada pela primeira vez e matematicamente descrita por Edward Lorenz, fundador da teoria do caos.Estes avanços levaram ao uso atual da previsão conjunta na maioria dos grandes centros de previsão, e a levar em conta a incerteza decorrente da natureza caótica da atmosfera. Nos últimos anos, modelos climáticos têm sido desenvolvidos, que apresentam uma resolução comparável aos antigos modelos de previsão do tempo. Tais modelos climáticos são usados para investigar mudanças climáticas em longo prazo, tais como os efeitos que podem ser causados por emissões humanas de gases do efeito estufa.No abril daquele ano, foi lançado com sucesso o primeiro satélite meteorológico de sucesso, o TIROS-1, e marcou início da era em que as informações meteorológicas tornaram-se disponíveis a nível global.
História da meteorologia no Brasil
Pode-se traçar o início da meteorologia no Brasil em 1781, com a campanha de medições meteorológicas no Rio de Janeiro e São Paulo lançadas pelos portugueses Francisco de Oliveira Barbosa e Bento Sanchez d'Orta.No ano da chegada da família real portuguesa ao Rio de Janeiro, 1808, a Marinha do Brasil criou o primeiro observatório meteorológico brasileiro.Em 1845, o observatório astronômico instituído em 1827 por D. Pedro I torna-se o Imperial Observatório do Rio de Janeiro,mas é passado às mãos do cientista francês Emanuel Liais em 1871.O belga Lu´ss Cruls, que assumiu a direção do observatório em 1881,publicou o primeiro grande trabalho científico sobre o clima brasileiro, com base em 40 anos de observações meteorológicas no Rio de Janeiro.Em 1849, o cearense Osvaldo Weber iniciou um trabalho de coletas de dados meteorológicos referentes à quantidade de chuvas no Nordeste Brasileiro a fim de se avaliar as dimensões das secas.Em Curitiba, foi instalado o primeiro observatório meteorológico fora do Rio de Janeiro em 1884.Em 1892 e 1893, Porto Alegre e Manaus também instalam novos observatórios meteorológicos.Em 1888, a Marinha do Brasil instala a primeira rede meteorológica brasileira,e em 1890, surge o primeiro serviço meteorológico de abrangência nacional.
Em 1909, é criada a Diretoria de Meteorologia e Astronomia, ligada ao Ministério da Agricultura.Em 1917, inicia-se de fato a previsão do tempo no Brasil com a elaboração dos primeiros mapas meteorológicos sinópticos, abrangendo inicialmente o estado do Rio de Janeiro com enfoque especial no Distrito Federal.A meteorologia do Brasil viu uma grande explosão de desenvolvimento após 1921, quando a Diretoria de Meteorologia se desmembra da Astronomia e ficou sob a administração de Sampaio Ferraz. Novos observatórios foram instalados, com equipamentos mais modernos, incluindo radiossondas e adotando a previsão numérica do tempo.ntretanto, a partir de 1930, o desenvolvimento meteorológico estagnou-se, com o sucateamento dos observatórios e dos equipamentos meteorológicos, e o desinteresse na formação de novos profissionais na área.
Apenas em 1958 surgiu o primeiro curso de meteorologia no Brasil, dois meses antes do surgimento da Sociedade Brasileira de Meteorologia.O primeiro curso de meteorologia de nível superior viria a ocorrer seis anos depois, na Universidade do Brasil, atual Universidade Federal do Rio de Janeiro.
História da meteorologia em Portugal
As primeiras manifestações da meteorologia como ciência em Portugal foram as observações meteorológicas realizadas pelo médico Tomás Heberden, no Funchal, entre 1747 e 1753.Entretanto, o primeiro observatório meteorológico português foi construído somente um século depois, que viria a ser chamado de Instituto do Infante D. Luís.Em 1865, inicia-se o serviço diário de previsão do tempo, e os boletins eram enviados aos jornais locais. Neste mesmo ano, começaram a ser içados sinais de tempo ruim em várias estações semafóricas.
No primeiro ano do século XX, foi instituído o Serviço Meteorológico dos Açores, extinto em 1946 com a criação do Serviço Meteorológico Nacional de Portugal.Com o advento da previsão numérica do tempo, houve a necessidade da atualização de equipamentos meteorológicos, e o primeiro sistema de radiossondagem veio a funcionar em 1930, mas o primeiro radar meteorológico português foi instalado em Lisboa em 1969.
O Serviço Meteorológico Nacional viria a ser desativado em 1976, e na sua reestruturação veio a ser chamado de Instituto Nacional de Meteorologia e Geofísica,e de Instituto de Meteorologia, I. P. em 1993.A instalação de estações meteorológicas automáticas viria a ocorrer somente em 1991.
Equipamentos
Cada ciência tem seu próprio conjunto de equipamentos laboratoriais. Na atmosfera terrestre, há uma grande variedade de informações a ser obtidas. A chuva, que pode ser observada ou vista em qualquer lugar e a qualquer hora, foi um das primeiras variáveis meteorológicas a ser medida historicamente. Mesmos as variáveis atmosféricas que não eram vistas diretamente, mas apenas sentidas, já eram conhecidas até o século XVIII; Ferdinando II de Medici já havia inventado o termômetro, para medir a temperatura, Evangelista Torricelli inventou o barômetro,Leone Battista Alberti havia inventado o primeiro anemômetro mecânico e Horace-Bénédict de Saussure inventou o primeiro higrômetro de cabelo tencionado, para medir a umidade do ar.
A coleta de dados numéricos da atmosférica é imprescindível para os meteorologistas. Podem revelar as condições meteorológicas instantâneas ou mesmo as condições futuras. Para a coleta de dados meteorológicos de uma localidade qualquer, é normalmente utilizado uma estação meteorológica, onde estão reunidos todos os equipamentos meteorológicos necessários. Para a coleta de dados meteorológicos em mares e oceanos, uma estação meteorológica pode estar embarcada num navio ou numa boia meteorológica. Entretanto, as medições meteorológicas de superfície não são suficientes. Para a coleta de dados meteorológicos da alta troposfera, faz-se necessário a utilização de radiossondas (balões meteorológicos), radares meteorológicos e estações meteorológicas embarcadas em aeronaves. Os radares meteorológicos realizaram a coleta de dados meteorológicos remotamente, mas o sensoriamento remoto também pode ser feito através de laser (LIDAR) ou por meio da visualização meteorológica feita por satélites meteorológicos.
Os equipamentos meteorológicos mais comuns utilizados em uma estação meteorológica são:
Anemômetros ou anemógrafos - para medir a velocidade do vento;
Barômetros ou barógrafos - para medir a pressão atmosférica;
Evaporímetros (de tanque ou porosos) - para medir o grau de evaporação de água numa superfície;
Heliógrafos - para medir a duração do brilho solar;
Higrômetros, higrógrafos, termo-higrógrafos ou psicrômetros - para medir a umidade do ar;
Pluviômetros ou pluviógrafos - para medir a precipitação pluvial (chuva);
Piranômetro ou piranógrafos - para medir a intensidade da radiação solar;
Termômetros, termógrafos, termo-higrômetros, termômetro de máxima e de mínima e termômetros de solo - para medir a temperatura ambiente ou para registrar a sua variação.
Áreas da meteorologia
No estudo da atmosfera, a meteorologia pode ser dividida em várias áreas de estudo, dependendo da abrangência temporal, ou da abrangência espacial de interesse. A ciência que estuda a atmosfera por um prolongado período de tempo é a climatologia. Por outro lado, considerando a meteorologia a ciência que estuda os fenômenos físicos da atmosfera terrestre num pequeno período de tempo, desde segundos a dias, a meteorologia separa-se em micrometeorologia, mesometeorologia e a meteorologia sinóptica. Respectivamente, o tamanho geoespacial de cada uma destas três escalas está relacionamento diretamente com os períodos de tempo envolvidos.
Micrometeorologia
A meteorologia de microescala, a micrometeorologia, é o estudo da atmosfera numa região com menos de 1 ou 2 km de extensão, em geral associada à Camada Limite Atmosférica (CLA), que é a camada inferior da troposfera junto a superfície. A micrometeorologia enfoca seu estudo nos fenômenos na CLA, incluindo os fluxos de energia que se definem na interface superfície-atmosfera, sobre as campanhas experimentais intensivas de medição, estudos e investigações da turbulência atmosférica, nas inter-relações dos fenômenos da CLA com tempestades individuais, nuvens em geral, e na dinâmica de escoamentos complexos associados às heterogeneidades superficiais (rugosidade, fluxos de calor), à presença de construções, colinas e outros obstáculos.
Meteorologia de mesoescala
A meteorologia de mesoescala é o estudo dos fenômenos atmosféricos que ocorrem dentro dos limites da escala sinóptica, mas que também ocorre verticalmente em toda a troposfera, podendo alcançar a tropopausa ou mesmo a camada mais inferior da estratosfera. O período de tempo de estudo de fenômenos meteorológicos de mesoescala pode abranger um dia ou várias semanas. Os eventos meteorológicos mais comuns estudados pela meteorologia de mesoescala são tempestades, linhas de instabilidade, frentes, e bandas de precipitação em ciclones tropicais e extratropicais. Além disso, a meteorologia de mesoescala estuda os fenômenos meteorológicos gerados pela orografia, como a brisa ou ondas estacionárias.
Meteorologia sinótica
A meteorologia sinótica é o estudo da atmosfera terrestre em grande escala, sendo possível a observações de alterações sinóticas (de pressão atmosférica) horizontais e os eventos meteorológicos associados. Os fenômenos atmosféricos que são explicados pela meteorologia sinótica incluem ciclones tropicais e extratropicais, zonas frontais, correntes de jato, bloqueios atmosféricos e as ondas de Rossby. Todos estes fenômenos podem ser descritos em um mapa meteorológico dentro de um período de tempo específico. A extensão mínima de estudo da atmosfera feita pela meteorologia sinótica é a distancia entre estações meteorológicas.
Meteorologia de escala global
A meteorologia de escala global é o estudo dos padrões atmosféricos relacionados ao transporte de calor dos trópicos aos polos. Oscilações periódicas da atmosfera em grande escala também é o alvo de estudo da meteorologia de escala global. Tais oscilações podem abranger um período de tempo maior do que um ano, como os efeitos do El Niño.
A meteorologia é uma ciência interdisciplinar, ou seja, pode-se aliar com outras ciências para que o processo da dinâmica da atmosfera possa ser mais entendida. Além disso, existem ainda outras subclassificações da meteorologia para aprofundamento do entendimento dos fenômenos meteorológicos.
Meteorologia física, que estuda os processos físicos envolvidos na formação dos eventos meteorológicos. A meteorologia física pode ser divida em várias outras subclassificações, desde a termodinâmica atmosfera, que faz parte do estudo da atmosfera dentro do estudo da mecânica dos fluídos, até o comportamento caótico da atmosfera;
Hidrometeorologia, que é o estudo da evolução da água existente na atmosfera em suas diversas formas: estado sólido (granizo, gelo, neve), líquido (chuva, orvalho) ou de vapor (ciclo de evaporação).
Agrometeorologia, que trata da interferência do clima e do tempo na agronomia.
Biometeorologia, que estuda a interação entre os seres vivos e a atmosfera, tais como os efeitos da poluição do homem e efeitos do clima sobre a vegetação a e biodiversidade em espaços de tempo curtos. A sensação térmica é alvo de estudo da biometeorologia.
Meteorologia aeronáutica e a meteorologia náutica ou marítima tratam de aplicações das pesquisas meteorológicas e climatológicas para melhorias no setor aéreo e náutico.
Meteorologia de latitudes médias, que se dedica a estudar os processos e fenômenos atmosféricos que ocorrem entre 23° e 60° de latitude.
Meteorologia tropical, que estuda os processos e os fenômenos atmosféricos típicos das regiões tropicais (entre 0° e 23°).
Meteorologia urbana, que estuda a ilha de calor urbana, a camada limite urbana, o conforto ambiental dos cidadãos, entre outros.
Aplicações
A previsão do tempo é uma das aplicações da meteorologia para prever o estado da atmosfera em um tempo futuro e em um determinado local. A humanidade tem tentado prever o tempo por milênios, mas a meteorologia começou a ser empregada para as previsões do tempo a partir do século XIX. As previsões meteorológicas são feitas através da coleta de dados sobre o estado atual da atmosfera terrestre, e com a compreensão científica dos processos atmosféricos para projetar como o tempo irá evoluir.
A plataforma principal para a previsão numérica do tempo é a análise da pressão atmosférica e as causas de sua mudança, além de seus desdobramentos.Para isso, foram criados modelos meteorológicos capazes de acompanhar o movimento das massas de ar com diferentes pressões atmosféricas, as suas relações (gradientes de pressão), além de associar a temperatura e a umidade do ar. Tais modelos meteorológicos são capazes de determinar o comportamento da atmosfera para um curto período de tempo no futuro
No entanto, não é possível, com a atual tecnologia, prever todos os desdobramentos da atmosfera; a atmosfera apresenta um comportamento caótico, isto é, um pequeno fator, que pode ser menor do que a margem de erro dos dados numéricos, pode desencadear eventos imprevisíveis.Para minimizar tais erros, é necessário uma massiva coleta de dados numéricos, e as suas interconexões são processadas por supercomputadores. Entretanto, a dinâmica da atmosfera ainda não é totalmente compreendida, e a previsão torna-se cada vez mais imprecisa conforme se aumenta o período de tempo no futuro; os modelos meteorológicos atuais são capazes de prever certos eventos apenas em um período de quinze dias no futuro, e os modelos climáticos não podem prever eventos que poderão vir a ocorrer a mais de oito meses no futuro. Para amenizar os erros, vários modelos meteorológicos são usados em conjunto, estabelecendo-se um consenso entre estes modelos.
Há uma grande variedade de finalidades para a previsão do tempo. Os avisos de tempo severo são importantes para preservar a vida humana e a economia. As previsões baseadas na temperatura e precipitação são importantes na agricultura. A previsão da temperatura também é importante na previsão, por exemplo, da demanda da energia elétrica ou de água para os dias vindouros. O cotidiano das pessoas pode ser alterado conforme a previsão do tempo. As atividades ao ar livre, como a construção civil, também são influenciadas pela previsão do tempo.
Aviação
A meteorologia aeronáutica é de vital importância para o controle do tráfego aéreo. A presença de tempestades e de regiões de cisalhamento do vento pode desviar aeronaves de suas rotas originais.
Agricultura
Meteorologistas, em conjunto com cientistas do solo, hidrologistas e agrônomos, tem como um dos campos de estudo os efeitos dos eventos meteorológicos na agricultura. Os eventos meteorológicos e climáticos podem determinar a localização das principais plantações de um determinado produto agrícola, o rendimento agrícola, a eficiência do uso da água, a fenologia e o balanço energético dos ecossistemas artificiais ou naturais. Além disso, também há o estudo do papel da vegetação, que pode incluir os efeitos da agricultura, para o clima local ou mesmo para a formação de eventos meteorológicos.
Hidrometeorologia
A hidrometeorologia é o ramo da meteorologia que lida com o ciclo hidrológico, com o balanço hídrico e com os dados estatísticos de chuvas. Os hidrometeorologistas preparam e emitem previsões de acumulação (quantitativo) de precipitação (chuva e neve), e destacam as regiões que podem vir a sofrer com as enchentes.
Meteorologia marítima
A meteorologia marítima tem como foco o acompanhamento de sistemas severos no oceano, além da altura das ondas, para a segurança de navios. Institutos como o Centro de Previsão Oceânica, dos Estados Unidos, o escritório do Serviço Nacional de Meteorologia dos Estados Unidos em Honolulu, Havaí, a Met Office (Agência Meteorológica do Reino Unido e a Agência Meteorológica do Japão, entre outros, prepararam boletins regulares do tempo em alto mar.
Geomorfologia
Geomorfologia é um ramo da geografia que estuda as formas da superfície terrestre. Para isso, tende a identificar, descrever e analisar tais formas, entendidas aqui como relevos, assim como todos seus aspectos genéticos, cronológicos, morfológicos, morfométricos e dinâmicos, tanto pretéritos como atuais e naturais ou antropogênico. O termo vem do grego: Γηος, geos (Terra), μορφή, morfé (forma) e λόγος, logos (estudo, conhecimento).
A geomorfologia centra-se no estudo das formas das paisagens, mas porque estes são o resultado da dinâmica da litosfera como um todo, integra o conhecimento, em primeiro lugar de outros ramos da geografia como a Climatologia, Hidrografia, Pedologia, Glaciologia, Paleogeografia e, do outro lado, também integra contributos de outras ciências, para incluir o impacto dos fenómenos biológicos, geológicos e antrópicos no relevo.
Este ramo da ciência integra-se tanto na geografia física, como na geografia humana, devido aos desastres naturais e às relações homem-ambiente, e também na geografia matemática, no que diz respeito à topografia). A geomorfologia toma forma no final do século XIX pelas mãos de William Morris Davis, que também é considerado o pai da geografia americana. Nesse tempo, a ideia prevalecente sobre a criação do relevo era do catastrofismo como causa principal. Davis e outros geógrafos começaram a demonstrar que outras causas foram responsáveis pela modelagem da superfície da Terra. Davis desenvolveu uma teoria da criação e destruição da paisagem, a que ele chamou de "ciclo geográfico".Obras como "The Rivers and Valleys of Pennsylvania", "The Geographical Cycle" e "Elementary Physical Geography", deram um forte impulso inicial, seguido por outros estudiosos, como Mark Jefferson, Isaiah Bowman, Curtis Marbut, que foram consolidando a disciplina.
Tipos de relevo
O relevo de todas as partes do planeta apresenta saliências e depressões oriundas das eras geológicas passadas. Estas saliências e depressões incluem as montanhas, planaltos, planícies e depressões; além desses acidentes existem outros menores, como as chapadas, as cuestas e as depressões periféricas...
Estes acidentes resultaram da ação de dois tipos de agentes ou fatores do relevo. De origem interna, que recebe o nome de endógenos (vulcanismo, tectonismo e outros) e de origem externa, com o nome de exógenos (água corrente, temperatura, chuva, vento, geleiras, seres vivos).
Tradicionalmente, o relevo divide-se tomando como base três classificações: de Aroldo de Azevedo, Aziz Ab'Saber e Jurandyr Ross.
Sendo a crosta terrestre a base da estrutura geológica da Terra, várias rochas passam a compor esta estrutura e distinguem-se conforme a origem:
Rochas Magmáticas (Rochas ígneas ou cristalinas): Formadas pela solidificação do magma, material encontrado no interior do globo terrestre. Podem ser plutônicas (ou intrusivas, ou abissais), solidificadas no interior da crosta, e vulcânicas (ou extrusivas, ou efusivas), consolidadas na superfície.
Rochas Sedimentares: Formadas pela deposição de detritos de outras rochas, pelo acúmulo de detritos orgânicos, ou pelo acúmulo de precipitados químicos.
Rochas Metamórficas: Formadas em decorrência de transformações sofridas por outras rochas, devido às novas condições de temperatura e pressão.
A disposição destas rochas determina três diferentes tipos de formações:
Escudos antigos ou maciços cristalinos: São blocos imensos de rochas antigas. Estes escudos são constituídos por rochas cristalinas (magmático-plutônicas), formadas em eras pré-cambrianas, ou por rochas metamórficas (material sedimentar) do Paleozóico, são resistentes, estáveis, porém bastante desgastadas.
Bacias Sedimentares: São depressões relativas, preenchidas por detritos ou sedimentos de áreas próximas. Este processo se deu nas eras Paleozóica, Mesozóica e Cenozóica, contudo ainda ocorrem nos dias atuais. Associam-se à presença de petróleo, carvão, xisto e gás natural.
Dobramentos Modernos: São estruturas formadas por rochas magmáticas e sedimentares pouco resistentes; foram afetadas por forças tectônicas durante o Terciário provocando o enrugamento e originando quando as cadeias montanhosas ou cordilheiras.
Em regiões como os Andes, as Montanhas Rochosas, os Alpes, o Atlas e o Himalaia, são freqüentes os terremotos e a atividade vulcânica. Apresentam também as maiores elevações da superfície terrestre. Os dobramentos resultam de forças laterais ou horizontais ocorridas em uma estrutura sedimentar que forma as cordilheiras. As falhas resultam de forças, pressões verticais ou inclinadas, provocando o desnivelamento das rochas resistentes.
Ramos da Geomorfologia
De descritiva e classificatória na sua origem, a geomorfologia evoluiu, como qualquer outra ciência, para o estudo das causas e inter-relações entre processos e formas. Esta abordagem, conhecida como a "geomorfologia dinâmica", tem beneficiado muito dos avanços tecnológicos, da redução de custos em equipamento de medição e do aumento exponencial do poder de processamento dos computadores. A geomorfologia dinâmica é fundamental no estudo dos processos de erosão e transporte de sedimentos.
A "geomorfologia climática" estuda a influência do clima sobre a evolução do relevo. O clima é responsável pelos ventos e precipitação, que agem na modelagem contínua da superfície da Terra. A diversidade climática implica velocidades diferentes na evolução do ciclo: em climas áridos, o ritmo evolutivo é mais lento, enquanto que climas muito úmidos apresentam maiores taxas de evolução. A modelagem climática depende ainda dos fatores predominantes em cada região: gelo, vento, rios ou outros. Este conhecimento é resumido no que se chama de "domínios morfoclimáticos".
A "geomorfologia fluvial" é o ramo especializado da geomorfologia que lida com o estudo das formas e estruturas provocadas pela dinâmica dos rios. Este subcampo é muitas vezes confundido com o campo da hidrografia.
A "geomorfologia de encostas" é a que estuda os fenômenos produzidos no sopé das montanhas, os movimentos de massa, estabilização de encostas e outros. Tem grande importância para o estudo dos riscos naturais.
A "geomorfologia eólica" estuda os processos e formas provocados pelo vento, especialmente em domínios morfoclimáticos onde o vento é predominante, por exemplo, nas zonas costeiras, desertos quentes e frios e regiões polares.
A "geomorfologia glacial" estuda as formações e os processos causados pelas geleiras e alívio periglacial. Este ramo é estreitamente ligado à Glaciologia.
A "geomorfologia estrutural", coloca o ênfase na influência dos processos geológicos no desenvolvimento do relevo. Esta disciplina é importante em áreas com forte actividade geológica, onde falhas e dobras podem predeterminar a existência de picos ou vales, ou a existência de baías e promontórios, ou outros afloramentos rochosos mais ou menos resistentes à erosão.
O sucesso da capacidade preditiva de alguns modelos e suas aplicações potenciais nas áreas de planejamento urbano, engenharia civil, estratégia militar, desenvolvimento costeiro, entre outros, forjou nas últimas décadas a "geomorfologia aplicada", mais proeminente na geografia francêsa graças ao Instituto do Geografia Aplicada, fundado por Jean Tricart. Esta aplicação concentra-se principalmente na interacção entre as actividades humanas e as formas de terra, com ênfase na gestão dos riscos causados pelas mudanças na superfície terrestre (natural ou induzida), conhecidos como "georriscos". Esses estudos incluem movimentos de massa, erosão das praias, atenuação das inundações, maremotos e outros.
A geomorfologia centra-se no estudo das formas das paisagens, mas porque estes são o resultado da dinâmica da litosfera como um todo, integra o conhecimento, em primeiro lugar de outros ramos da geografia como a Climatologia, Hidrografia, Pedologia, Glaciologia, Paleogeografia e, do outro lado, também integra contributos de outras ciências, para incluir o impacto dos fenómenos biológicos, geológicos e antrópicos no relevo.
Este ramo da ciência integra-se tanto na geografia física, como na geografia humana, devido aos desastres naturais e às relações homem-ambiente, e também na geografia matemática, no que diz respeito à topografia). A geomorfologia toma forma no final do século XIX pelas mãos de William Morris Davis, que também é considerado o pai da geografia americana. Nesse tempo, a ideia prevalecente sobre a criação do relevo era do catastrofismo como causa principal. Davis e outros geógrafos começaram a demonstrar que outras causas foram responsáveis pela modelagem da superfície da Terra. Davis desenvolveu uma teoria da criação e destruição da paisagem, a que ele chamou de "ciclo geográfico".Obras como "The Rivers and Valleys of Pennsylvania", "The Geographical Cycle" e "Elementary Physical Geography", deram um forte impulso inicial, seguido por outros estudiosos, como Mark Jefferson, Isaiah Bowman, Curtis Marbut, que foram consolidando a disciplina.
Tipos de relevo
O relevo de todas as partes do planeta apresenta saliências e depressões oriundas das eras geológicas passadas. Estas saliências e depressões incluem as montanhas, planaltos, planícies e depressões; além desses acidentes existem outros menores, como as chapadas, as cuestas e as depressões periféricas...
Estes acidentes resultaram da ação de dois tipos de agentes ou fatores do relevo. De origem interna, que recebe o nome de endógenos (vulcanismo, tectonismo e outros) e de origem externa, com o nome de exógenos (água corrente, temperatura, chuva, vento, geleiras, seres vivos).
Tradicionalmente, o relevo divide-se tomando como base três classificações: de Aroldo de Azevedo, Aziz Ab'Saber e Jurandyr Ross.
Sendo a crosta terrestre a base da estrutura geológica da Terra, várias rochas passam a compor esta estrutura e distinguem-se conforme a origem:
Rochas Magmáticas (Rochas ígneas ou cristalinas): Formadas pela solidificação do magma, material encontrado no interior do globo terrestre. Podem ser plutônicas (ou intrusivas, ou abissais), solidificadas no interior da crosta, e vulcânicas (ou extrusivas, ou efusivas), consolidadas na superfície.
Rochas Sedimentares: Formadas pela deposição de detritos de outras rochas, pelo acúmulo de detritos orgânicos, ou pelo acúmulo de precipitados químicos.
Rochas Metamórficas: Formadas em decorrência de transformações sofridas por outras rochas, devido às novas condições de temperatura e pressão.
A disposição destas rochas determina três diferentes tipos de formações:
Escudos antigos ou maciços cristalinos: São blocos imensos de rochas antigas. Estes escudos são constituídos por rochas cristalinas (magmático-plutônicas), formadas em eras pré-cambrianas, ou por rochas metamórficas (material sedimentar) do Paleozóico, são resistentes, estáveis, porém bastante desgastadas.
Bacias Sedimentares: São depressões relativas, preenchidas por detritos ou sedimentos de áreas próximas. Este processo se deu nas eras Paleozóica, Mesozóica e Cenozóica, contudo ainda ocorrem nos dias atuais. Associam-se à presença de petróleo, carvão, xisto e gás natural.
Dobramentos Modernos: São estruturas formadas por rochas magmáticas e sedimentares pouco resistentes; foram afetadas por forças tectônicas durante o Terciário provocando o enrugamento e originando quando as cadeias montanhosas ou cordilheiras.
Em regiões como os Andes, as Montanhas Rochosas, os Alpes, o Atlas e o Himalaia, são freqüentes os terremotos e a atividade vulcânica. Apresentam também as maiores elevações da superfície terrestre. Os dobramentos resultam de forças laterais ou horizontais ocorridas em uma estrutura sedimentar que forma as cordilheiras. As falhas resultam de forças, pressões verticais ou inclinadas, provocando o desnivelamento das rochas resistentes.
Ramos da Geomorfologia
De descritiva e classificatória na sua origem, a geomorfologia evoluiu, como qualquer outra ciência, para o estudo das causas e inter-relações entre processos e formas. Esta abordagem, conhecida como a "geomorfologia dinâmica", tem beneficiado muito dos avanços tecnológicos, da redução de custos em equipamento de medição e do aumento exponencial do poder de processamento dos computadores. A geomorfologia dinâmica é fundamental no estudo dos processos de erosão e transporte de sedimentos.
A "geomorfologia climática" estuda a influência do clima sobre a evolução do relevo. O clima é responsável pelos ventos e precipitação, que agem na modelagem contínua da superfície da Terra. A diversidade climática implica velocidades diferentes na evolução do ciclo: em climas áridos, o ritmo evolutivo é mais lento, enquanto que climas muito úmidos apresentam maiores taxas de evolução. A modelagem climática depende ainda dos fatores predominantes em cada região: gelo, vento, rios ou outros. Este conhecimento é resumido no que se chama de "domínios morfoclimáticos".
A "geomorfologia fluvial" é o ramo especializado da geomorfologia que lida com o estudo das formas e estruturas provocadas pela dinâmica dos rios. Este subcampo é muitas vezes confundido com o campo da hidrografia.
A "geomorfologia de encostas" é a que estuda os fenômenos produzidos no sopé das montanhas, os movimentos de massa, estabilização de encostas e outros. Tem grande importância para o estudo dos riscos naturais.
A "geomorfologia eólica" estuda os processos e formas provocados pelo vento, especialmente em domínios morfoclimáticos onde o vento é predominante, por exemplo, nas zonas costeiras, desertos quentes e frios e regiões polares.
A "geomorfologia glacial" estuda as formações e os processos causados pelas geleiras e alívio periglacial. Este ramo é estreitamente ligado à Glaciologia.
A "geomorfologia estrutural", coloca o ênfase na influência dos processos geológicos no desenvolvimento do relevo. Esta disciplina é importante em áreas com forte actividade geológica, onde falhas e dobras podem predeterminar a existência de picos ou vales, ou a existência de baías e promontórios, ou outros afloramentos rochosos mais ou menos resistentes à erosão.
O sucesso da capacidade preditiva de alguns modelos e suas aplicações potenciais nas áreas de planejamento urbano, engenharia civil, estratégia militar, desenvolvimento costeiro, entre outros, forjou nas últimas décadas a "geomorfologia aplicada", mais proeminente na geografia francêsa graças ao Instituto do Geografia Aplicada, fundado por Jean Tricart. Esta aplicação concentra-se principalmente na interacção entre as actividades humanas e as formas de terra, com ênfase na gestão dos riscos causados pelas mudanças na superfície terrestre (natural ou induzida), conhecidos como "georriscos". Esses estudos incluem movimentos de massa, erosão das praias, atenuação das inundações, maremotos e outros.
Astrogeologia
A astrogeologia ou geologia planetária é uma ciência planetária cujo estudo centra-se na geologia dos corpos celestes, tais como, planetas, luas, cometas e meteoritos. Dado que o estudo das rochas se iniciou com o estudo das rochas terrestres, e devido ao tipo de trabalho científico realizado, a astrogeologia encontra-se extremamente ligada à geologia terrestre.
O termo geologia é usada aqui em seu sentido mais amplo para designar o estudo das partes sólidas dos planetas. Dessa forma, os aspectos de geofísica, geoquímica, geodésia, cartografia, e outras disciplinas relacionadas ao estudo de corpos sólidos estão incluídas no termo geral, geologia.
O termo geologia é usada aqui em seu sentido mais amplo para designar o estudo das partes sólidas dos planetas. Dessa forma, os aspectos de geofísica, geoquímica, geodésia, cartografia, e outras disciplinas relacionadas ao estudo de corpos sólidos estão incluídas no termo geral, geologia.
Magnetosfera
Magnetosfera pode ser considerada como uma região envoltória, constituindo a parte exterior da atmosfera de um astro, em que o campo magnético controla os processos eletrodinâmicos da atmosfera ionizada e de plasmas. O plasma se distingue da atmosfera ionizada por apresentar não apenas ionização, mas algumas propriedades a mais, como comportamento coletivo dos constituintes quando submetidos a perturbações e uma neutralidade elétrica em uma escala macroscópica. Essa região surge da incidência da radiação de uma estrela sobre a atmosfera de um astro permeada por um campo magnético.
De uma forma resumida, nessa região, três elementos principais devem ser considerados para o entendimento dos fenômenos, dos seus comportamentos e da importância deles: a existência de campos elétricos, de correntes elétricas e de campos magnéticos resultantes.
A eletrodinâmica da magnetosfera afecta não somente o ambiente espacial em torno de um astro como também a sua atmosfera mais baixa e a própria superfície. Por exemplo, tempestades magnéticas podem produzir interrupções nos serviços de telecomunicações utilizados pelos seres humanos no cotidiano. Portanto, estudos sobre o Sol, o meio interplanetário e o ambiente terrestre são actualmente de importância estratégica para o desenvolvimento e a segurança de uma civilização cada vez mais tecnologicamente dependente.
A magnetosfera e seu entorno podem ser segmentados em regiões com características físicas próprias. Antes dela, em direção ao Sol, devido a incidência do plasma solar que tem uma grande velocidade, há uma frente de choque, região que se traduz por uma descontinuidade nos parâmetros físicos do meio, e uma bainha magnética, em que o plasma e o campo magnético do vento solar tem seus valores significativamente alterados. Têm-se então (a) a magnetopausa, que é a região fronteira externa da magnetosfera, sustentando correntes elétricas para assegurar a descontinuidade entre o meio físico solar e o meio físico terrestre; (b) a magnetosfera externa, constituída de plasmas solar e terrestre, com a parte frontal em direção ao Sol, e a cauda magnetosférica, um prolongamento da atmosfera magnetizada em direção oposta ao Sol; e (c) a magnetosfera interna, em que as linhas de campo magnético estão necessariamente fechadas e fixadas na superfície do astro. Ainda interior a essa região, em direção a superfície, existem a plasmasfera, região em que o plasma terrestre mais denso co-rotaciona com o planeta, e a Ionosfera, região fortemente ionizada. Abaixo dessa região, por fim, há a região mais densa formada por uma atmosfera neutra, a que a Ionosfera se vincula, em que os processos meteorológicos determinam o comportamento.
As magnetosferas dos planetas são responsáveis pela ocorrência das auroras polares, na Terra conhecidas por auroras boreais e auroras austrais.
Durante muito tempo, a magnetosfera terrestre foi conhecida por Cinturão de Van Allen, por ter sido o cientista norte-americano James Alfred Van Allen (1914-2006) o responsável por sua descoberta. Em 1958, Van allen suspeitou de que havia algo errado com o fato dos instrumentos a bordo de satélites enviados ao espaço registrarem, quando atingiam algumas centenas de quilômetros de altitude, zero partículas carregadas. Para ele a realidade seria outra: as partículas nas altas camadas estariam tão carregadas que impediriam o correto funcionamento dos sensores. Assim, por sugestão sua, o satélite Explorer IV (Estados Unidos) foi equipado com contadores revestidos por uma fina camada de chumbo e em julho de 1958 foi finalmente medida a correta radiação, que era até superior à que os cientistas esperavam. Esta foi a primeira grande descoberta importante, totalmente inesperada, resultante do lançamento dos satélites artificiais.
De uma forma resumida, nessa região, três elementos principais devem ser considerados para o entendimento dos fenômenos, dos seus comportamentos e da importância deles: a existência de campos elétricos, de correntes elétricas e de campos magnéticos resultantes.
A eletrodinâmica da magnetosfera afecta não somente o ambiente espacial em torno de um astro como também a sua atmosfera mais baixa e a própria superfície. Por exemplo, tempestades magnéticas podem produzir interrupções nos serviços de telecomunicações utilizados pelos seres humanos no cotidiano. Portanto, estudos sobre o Sol, o meio interplanetário e o ambiente terrestre são actualmente de importância estratégica para o desenvolvimento e a segurança de uma civilização cada vez mais tecnologicamente dependente.
A magnetosfera e seu entorno podem ser segmentados em regiões com características físicas próprias. Antes dela, em direção ao Sol, devido a incidência do plasma solar que tem uma grande velocidade, há uma frente de choque, região que se traduz por uma descontinuidade nos parâmetros físicos do meio, e uma bainha magnética, em que o plasma e o campo magnético do vento solar tem seus valores significativamente alterados. Têm-se então (a) a magnetopausa, que é a região fronteira externa da magnetosfera, sustentando correntes elétricas para assegurar a descontinuidade entre o meio físico solar e o meio físico terrestre; (b) a magnetosfera externa, constituída de plasmas solar e terrestre, com a parte frontal em direção ao Sol, e a cauda magnetosférica, um prolongamento da atmosfera magnetizada em direção oposta ao Sol; e (c) a magnetosfera interna, em que as linhas de campo magnético estão necessariamente fechadas e fixadas na superfície do astro. Ainda interior a essa região, em direção a superfície, existem a plasmasfera, região em que o plasma terrestre mais denso co-rotaciona com o planeta, e a Ionosfera, região fortemente ionizada. Abaixo dessa região, por fim, há a região mais densa formada por uma atmosfera neutra, a que a Ionosfera se vincula, em que os processos meteorológicos determinam o comportamento.
As magnetosferas dos planetas são responsáveis pela ocorrência das auroras polares, na Terra conhecidas por auroras boreais e auroras austrais.
Durante muito tempo, a magnetosfera terrestre foi conhecida por Cinturão de Van Allen, por ter sido o cientista norte-americano James Alfred Van Allen (1914-2006) o responsável por sua descoberta. Em 1958, Van allen suspeitou de que havia algo errado com o fato dos instrumentos a bordo de satélites enviados ao espaço registrarem, quando atingiam algumas centenas de quilômetros de altitude, zero partículas carregadas. Para ele a realidade seria outra: as partículas nas altas camadas estariam tão carregadas que impediriam o correto funcionamento dos sensores. Assim, por sugestão sua, o satélite Explorer IV (Estados Unidos) foi equipado com contadores revestidos por uma fina camada de chumbo e em julho de 1958 foi finalmente medida a correta radiação, que era até superior à que os cientistas esperavam. Esta foi a primeira grande descoberta importante, totalmente inesperada, resultante do lançamento dos satélites artificiais.
Habitabilidad Planetaria
La habitabilidad planetaria es una medida del potencial que tiene un cuerpo cósmico de sustentar vida. Se puede aplicar tanto a los planetas como a los satélites naturales de los planetas.
El único requisito absoluto para la vida es una fuente de energía. Por este motivo, es interesante determinar la zona de habitabilidad de diferentes estrellas, pero la noción de habitabilidad planetaria implica el cumplimiento de muchos otros criterios geofísicos, geoquímicos y astrofísicos para que un cuerpo cósmico sea capaz de sustentar vida. Como se desconoce la existencia de vida extraterrestre, la habitabilidad planetaria es, en gran parte, una extrapolación de las condiciones de la Tierra y las características del Sol y el Sistema Solar que parecen favorables para el florecimiento de la vida. Es de interés particular el conjunto de factores que ha favorecido el surgimiento en la Tierra de organismos pluricelulares y no simplemente organismos unicelulares. La investigación y la teoría sobre este tema son componentes de la ciencia planetaria y la disciplina emergente de la astrobiología.
La idea de que otros planetas puedan albergar vida es muy antigua, aunque históricamente ha estado enmarcada dentro de la filosofía tanto como dentro de las ciencias físicas.El final del siglo XX vivió dos grandes avances en esta materia. Para empezar, la exploración robótica y la observación de otros planetas y satélites del Sistema Solar han proporcionado información esencial para definir los criterios de habitabilidad y han permitido establecer comparaciones geofísicas sustanciales entre la Tierra y otros cuerpos. El descubrimiento de planetas extrasolares —que comenzó en 1992 y se ha disparado desde entonces— fue el segundo hito. Confirmó que el Sol no es único albergando planetas y extendió el horizonte de la investigación sobre habitabilidad más allá del Sistema Solar.
Sistemas estelares aptos
La comprensión de la habitabilidad planetaria empieza en las estrellas. Aunque puede que los cuerpos que, en general, son parecidos a la Tierra sean muy numerosos, es igual de importante que el sistema en el que habitan sea compatible con la vida. Con el auspicio del Proyecto Phoenix del SETI, las científicas Margaret Turnbull y Jill Tarter desarrollaron en 2002 el "HabCat" (o "Catálogo de Sistemas Estelares Habitables"). El catálogo fue confeccionado cribando las casi 120 000 estrellas del Catálogo Hipparcos hasta quedarse con un grupo de 17 000 "HabStars", y los criterios de selección que utilizaron proporcionan un buen punto de partida para comprender por qué son necesarios los factores astrofísicos para que un planeta sea habitable.
Tipo espectral
El tipo espectral de una estrella indica la temperatura de su fotosfera, que (para las estrellas de la secuencia principal) está correlacionada con la masa total. Actualmente se considera que el rango espectral apropiado para las "HabStars" va desde "F bajo" o "G" hasta "K mediano". Esto corresponde a unas temperaturas de poco más de 7000 K hasta poco más de 4000 K; el Sol (no es coincidencia) está justo en el punto medio de estos límites, y está clasificado como estrella G2. Las estrellas de "clase media" como ésta tienen una serie de características consideradas importantes para la habitabilidad planetaria:
Viven al menos unos cuantos miles de millones de años, dando oportunidad a que la vida evolucione. Las estrellas de la secuencia principal de tipo "O", "B" y "A", más luminosas, normalmente viven menos de mil millones de años y en casos excepcionales menos de 10 millones de años.
Emiten la suficiente radiación ultravioleta de alta energía para que se produzcan fenómenos atmosféricos importantes como la formación de ozono, pero no tanta como para que la ionización destruya la vida incipiente.
Puede existir agua líquida en la superficie de los planetas que orbitan a una distancia que no produce acoplamiento de marea.
Estas estrellas no son ni "muy calientes" ni "muy frías" y viven lo bastante como para que la vida tenga oportunidad de surgir. Este rango espectral representa entre un 5 y un 10 por ciento de las estrellas de la galaxia Vía Láctea. Si las estrellas de tipo K bajo y M ("enanas rojas") también son aptas para albergar planetas habitables es quizás la cuestión abierta más importante de todo el campo de la habitabilidad planetaria, dado que la mayor parte de las estrellas caen dentro de ese rango; esto se explica extensamente más abajo.
Una zona habitable estable
La zona habitable (ZH) es una cáscara teórica que rodea a una estrella, dentro de la cual cualquier planeta tendría agua (u otro disolvente potencial) líquido en su superficie. Después de una fuente de energía, el agua líquida se considera el ingrediente más importante para la vida, considerando lo esencial que es para todos los seres vivos de la Tierra. Puede que esto refleje los prejuicios de una especie dependiente del agua, y si se descubre vida en ausencia de agua (por ejemplo, en una solución de amoníaco líquido), la noción de ZH tendrá que expandirse mucho o descartarse completamente por demasiado restrictiva.
Una ZH "estable" implica dos factores. Primero, el rango de una ZH no debe variar mucho con el tiempo. Todas las estrellas aumentan de luminosidad cuando envejecen y sus ZH se desplazan naturalmente hacia el exterior, pero si esto sucede demasiado rápido (por ejemplo, con una estrella supermasiva), los planetas tendrán solo una breve ventana dentro del ZH y por tanto una menor probabilidad de desarrollar vida. Calcular el rango de una ZH y su movimiento a largo plazo nunca es sencillo, dado que los ciclos de retroalimentación negativos como el ciclo del carbono tienden a desplazar los aumentos de luminosidad. Las suposiciones que se hacen sobre las condiciones atmosféricas y la geología tienen un impacto sobre el rango de la ZH tan grande como la evolución solar; los parámetros propuestos para la ZH del Sol, por ejemplo, han fluctuado mucho.
Segundo, no debe existir ningún cuerpo masivo como un gigante gaseoso dentro o relativamente cerca de la ZH, interfiriendo en la formación de cuerpos como la Tierra. La masa del cinturón de asteroides, por ejemplo, parece que no fue capaz de formar un planeta por acreción debido a resonancias orbitales con Júpiter; si el gigante hubiese aparecido en la región que ahora está entre las órbitas de Venus y Marte, casi con toda seguridad la Tierra no habría desarrollado su forma actual. Esto está compensado de alguna manera por los indicios de que un gigante gaseoso dentro de la ZH, bajo ciertas condiciones, podría tener satélites habitables.
Antes se suponía que el patrón de planetas rocosos interiores y gigantes gaseosos exteriores observable en el Sistema Solar era la norma en todas partes, pero los descubrimientos de planetas extrasolares han echado por tierra esta idea. Se han hallado numerosos cuerpos del tamaño de Júpiter en órbita cercana a su estrella primaria, desbaratando las ZHs potenciales. Es probable que los datos actuales de planetas extrasolares estén sesgados hacia los planetas grandes con órbitas pequeñas y excéntricas, porque son mucho más fáciles de identificar; todavía permanece desconocido qué tipo de sistema solar es la norma.
Baja variación estelar
Los cambios en luminosidad son comunes en todas las estrellas, pero la magnitud de esas fluctuaciones cubre un gran rango. La mayoría de las estrellas son relativamente estables, pero una minoría significativa de estrellas variables experimenta a menudo aumentos súbitos e intensos de luminosidad, y por consiguiente de energía radiada hacia los cuerpos en órbita. Estas estrellas se consideran malas candidatas para albergar planetas habitables, ya que su impredecibilidad y los cambios en sus emisiones de energía tendrían un impacto negativo en los organismos. Como consecuencia más evidente, los seres vivos adaptados a una temperatura particular probablemente serían incapaces de sobrevivir a un cambio de temperatura demasiado grande. Es más, los aumentos de luminosidad suelen estar acompañados de enormes dosis de rayos gamma y rayos X que pueden resultar letales. Las atmósferas mitigan tales efectos (un aumento absoluto del 100 por ciento de la luminosidad del Sol no necesariamente significaría un aumento del 100 por ciento de la temperatura absoluta de la Tierra), pero puede que la protección de las atmósferas no se dé en los planetas que orbitan alrededor de estrellas variables, ya que la energía de alta frecuencia que golpea a estos cuerpos los privaría continuamente de su cubierta protectora.
El Sol, como en casi todo, es benigno en relación con este peligro: la variación entre el máximo y el mínimo solar es de apenas un 0,1 por ciento, a lo largo de su ciclo solar de 11 años. Hay gran evidencia de que los pequeños cambios en la luminosidad del Sol han tenido efectos significativos en el clima de la Tierra dentro del tiempo histórico; la Pequeña Edad de Hielo de mediados del segundo milenio, por ejemplo, pudo tener su causa en una disminución a largo plazo de la luminosidad del Sol.6 Por tanto, una estrella no necesita ser una verdadera estrella variable para que las diferencias en su luminosidad afecten a la habitabilidad. De los "gemelos del sol" conocidos, se considera que el que más se parece al Sol es 18 Scorpii; es interesante el hecho de que la única diferencia significativa entre ambos cuerpos es la amplitud del ciclo solar, que parece ser mucho mayor para 18 scorrpp.
Alta metalicidad
Aunque el grueso del material de cualquier estrella es el hidrógeno y el helio, hay una gran variación en la cantidad de elementos pesados que contiene. Una gran proporción de metales en una estrella está correlacionada con la cantidad de material pesado disponible en el disco protoplanetario. Una baja cantidad de metal disminuye significativamente la probabilidad de que se hayan formado planetas alrededor de una estrella, según la teoría de la nebulosa solar sobre la formación de sistemas planetarios. Cualquier planeta que se forme alrededor de una estrella con poco metal tendrá probablemente muy poca masa, y por tanto no será favorable para la vida. Hasta la fecha, los estudios espectroscópicos de los sistemas en los que se ha encontrado un exoplaneta confirman la relación entre un alto contenido metálico y la formación de planetas: «Las estrellas con planetas, o al menos con planetas similares a los que encontramos hoy en día, son claramente más ricas en metales que las estrellas sin compañía planetaria».La alta metalicidad también establece un requisito de juventud para las habstars: las estrellas formadas al principio de la historia del universo tienen un contenido bajo de metales y una correspondiente menor probabilidad de tener compañeros planetarios.
Características planetarias
La principal suposición sobre los planetas habitables es que son terrestres. Estos planetas, que se encuentran aproximadamente dentro de un orden de magnitud de la masa de la Tierra, están compuestos principalmente de rocas de silicato y no han acrecido a partir de las capas gaseosas exteriores de hidrógeno y helio que se encuentran en los gigantes gaseosos. No se ha descartado completamente que pueda evolucionar vida en las nubes superiores de los planetas gigantes,Nota 4 aunque se considera poco probable dado que no tienen superficie y su gravedad es enorme.9 Los satélites naturales de los planetas gigantes, por otro lado, son candidatos perfectamente válidos para albergar vida.
Al analizar qué ambientes tienen mayor probabilidad de permitir vida, se suele hacer una distinción entre los organismos unicelulares como las bacterias y arqueas, y los organismos complejos como los metazoos (animales). La unicelularidad precede necesariamente a la pluricelularidad en cualquier hipotético árbol de la vida, y donde emergen organismos unicelulares no hay nada que asegure que se desarrollará mayor complejidad que esa.Las características planetarias listadas abajo se consideran generalmente cruciales para la vida, pero en todos los casos los impedimentos a la habitabilidad deben considerarse más severos para los organismos pluricelulares como las plantas y los animales que para la vida unicelular.
Masa
Los planetas con poca masa son malos candidatos para la vida por dos razones. Primero, su baja gravedad hace que conservar la atmósfera sea difícil. Las moléculas constituyentes tienen más probabilidad de alcanzar la velocidad de escape y perderse en el espacio cuando son bombardeadas con viento solar o agitadas por una colisión. Los planetas que no tienen una atmósfera gruesa carecen del material necesario para una bioquímica primaria, tienen poco aislamiento y poca transferencia de calor entre su superficie (por ejemplo, Marte, con su fina atmósfera, es más fría de lo que lo sería la Tierra a una distancia parecida) y menos protección contra la radiación de alta frecuencia y los meteoroides. Además, si la atmósfera es menor de 0,006 atmósferas terrestres, no puede existir agua en forma líquida por no alcanzar la presión atmosférica requerida, 4,56 mmHg (608 pascales). El rango de temperaturas en el que el agua es líquida es más pequeño a bajas presiones, en general.
Segundo, los planetas pequeños tienen diámetros pequeños y por tanto mayor proporción superficie/volumen que sus primos mayores. Estos cuerpos tienden a perder rápidamente la energía que sobró tras su formación y terminan geológicamente muertos, careciendo de volcanes, terremotos y actividad tectónica, que proporcionan a la superficie materiales necesarios para la vida y a la atmósfera moderadores de la temperatura como el dióxido de carbono. La tectónica de placas parece ser particularmente crucial, al menos en la Tierra: no solo sirve para reciclar minerales y compuestos químicos importantes, también fomenta la biodiversidad creando continentes y aumentando la complejidad ambiental y ayuda a crear las células convectivas necesarias para generar el campo magnético terrestre.
"Poca masa" es una etiqueta en parte relativa; se considera que la Tierra tiene poca masa cuando se compara con los gigantes gaseosos del Sistema Solar, pero es, de todos los cuerpos terrestres, el más grande en diámetro y masa y también el más denso.Nota 6 Es lo bastante grande para retener una atmósfera con su gravedad y para que su núcleo líquido siga siendo una fuente de calor, impulsando la diversa geología de la superficie (la descomposición de los elementos radioactivos en el núcleo de un planeta es otro componente significativo del calentamiento planetario). Marte, en contraste, está casi (o quizás totalmente) muerto geológicamente, y ha perdido gran parte de su atmósfera.Por tanto, sería correcto deducir que el límite de la masa mínima para la habitabilidad se encuentra en algún punto entre Marte y la Tierra o Venus. Unas circunstancias excepcionales ofrecen casos excepcionales: el satélite de Júpiter Io (más pequeña que los planetas terrestres) es volcánicamente activa por las tensiones gravitatorias inducidas por su órbita; el vecino Europa puede tener un océano líquido bajo una capa congelada debido también a la energía creada en su órbita alrededor de un gigante gaseoso; el satélite de Saturno Titán, por otro lado, tiene una remota posibilidad de albergar vida, ya que conserva una gruesa atmósfera y son posibles las reacciones bioquímicas en el metano líquido de su superficie. Estos satélites son excepciones, pero demuestran que la masa como criterio de habitabilidad no puede considerarse como definitiva.
Finalmente, un planeta grande es probable que tenga un gran núcleo de hierro. Esto permite la existencia de un campo magnético que proteja al planeta del viento solar, que de otra manera tendería a despojarlo de su atmósfera y bombardearía a los seres vivos con partículas ionizadas. La masa no es el único criterio necesario para producir un campo magnético —el planeta también debe rotar lo bastante rápido para producir un efecto de dinamo dentro de su núcleo — pero es un componente significativo del proceso.
Órbita y rotación
Como en los otros criterios, la estabilidad es la consideración crítica para determinar el efecto de las características orbitales y rotacionales sobre la habitabilidad planetaria. La excentricidad orbital es la diferencia entre las distancias mayor y menor al objeto primario. Cuanto mayor es la excentricidad, mayor es la fluctuación de la temperatura en la superficie de un planeta. Aunque son adaptativos, los seres vivos solo pueden soportar cierta variación, sobre todo si las fluctuaciones sobrepasan tanto el punto de congelación como el punto de ebullición del solvente biótico principal del planeta (por ejemplo, el agua en la Tierra). Si, por ejemplo, los océanos de la Tierra se evaporaran y congelaran alternativamente, es difícil imaginar cómo podría haber evolucionado la vida tal y como la conocemos. Cuanto más complejo es un organismo, más sensible es a las temperaturas.La órbita de la Tierra es casi circular, con una excentricidad menor de 0,02; otros planetas de nuestro sistema (con la excepción de Plutón y Mercurio) tienen excentricidades igualmente benignas.
Los datos recogidos sobre la excentricidad orbital de los planetas extra solares ha sorprendido a muchos investigadores: el 90 % tiene una excentricidad orbital más grande que los planetas del sistema solar, y la media es 0,25.Esto podría ser fácilmente el resultado de un sesgo en la muestra. A menudo los planetas no se observan directamente, sino que se infieren a partir del "tambaleo" que producen en su estrella. Cuanto mayor es la excentricidad, mayor es la perturbación sobre la estrella, y por tanto mayor la detectabilidad del planeta.
El movimiento de un planeta alrededor de su eje de rotación también debe cumplir ciertos criterios para que la vida tenga oportunidad de evolucionar. Una primera suposición es que el planeta debe tener estaciones moderadas. Si hay poca o ninguna inclinación axial (u oblicuidad) relativa a la perpendicular de la eclíptica, no habrá estaciones y por tanto desaparecerá un estimulante principal de la dinámica de la biosfera. El planeta también sería mucho más frío de lo que sería si tuviera una inclinación significativa: cuando la radiación más intensa cae siempre dentro de unos pocos grados del ecuador, el clima cálido no puede superar al polar y el clima del planeta acaba dominado por los sistemas climáticos polares, más fríos.
Por otro lado, si un planeta está radicalmente inclinado, las estaciones serán extremas y harán más difícil que la biosfera alcance la homeostasis. Aunque durante el Cuaternario la Tierra tenía una mayor inclinación axial que coincidió con una reducción del hielo polar, temperaturas más cálidas y menos variación estacional, los científicos no saben si esta tendencia hubiera continuado indefinidamente con una mayor inclinación del eje. (Véase Glaciación global).
Los efectos exactos de estos cambios solo se pueden modelar por computador hoy en día, y los estudios muestran que incluso las inclinaciones extremas de hasta 85 grados no descartan absolutamente la vida, "siempre que no ocupen superficies continentales que sufren estacionalmente la mayor temperatura".No solo se debe considerar la inclinación axial media, sino también su variación en el tiempo. La inclinación de la Tierra varía entre 21,5 y 24,5 grados en 41 000 años. Una variación más drástica, o una periodicidad mucho más corta, inducirían cambios climáticos como variaciones en la severidad de las estaciones.
Otras consideraciones orbitales son:
El planeta debe rotar relativamente rápido para que el ciclo día-noche no sea demasiado largo. Si un día dura años, la temperatura diferencial entre el lado de día y el lado de noche será pronunciada, y aparecerán problemas similares a los de la excentricidad orbital extrema.
Los cambios en la dirección del eje de rotación (precesión) no deberían ser pronunciados. Por sí misma, la precesión no afecta a la habitabilidad, ya que cambia la dirección de la inclinación, no su grado. Sin embargo, la precesión tiende a acentuar las variaciones causadas por otras desviaciones orbitales. En la Tierra, la precesión tiene un ciclo de 23 000 años.
La Luna parece jugar un papel crucial en la moderación del clima terrestre al estabilizar la inclinación axial. Se ha sugerido que una inclinación caótica puede ser fatal para la habitabilidad, es decir, un satélite del tamaño de la Luna no solo es de ayuda sino un requisito para producir estabilidad.Existe controversia sobre este punto.
Geoquímica
En general se asume que cualquier vida extraterrestre que pueda existir estará basada en la misma química fundamental que la vida terrestre, ya que los cuatro elementos primordiales para la vida, el carbono, hidrógeno, oxígeno y nitrógeno también son los elementos químicos reactivos más comunes del universo. De hecho, se han hallado compuestos biogénicos sencillos, como los aminoácidos, en meteoritos y en el espacio interestelar. Estos cuatro elementos constituyen el 96 por ciento de la biomasa total de la Tierra. El carbono tiene una capacidad sin parangón para enlazarse consigo mismo y formar estructuras variadas e intrincadas, convirtiéndolo en el material ideal para los complejos mecanismos que forman las células vivas. El hidrógeno y el oxígeno, en forma de agua, componen el solvente en el que tienen lugar los procesos biológicos y en el que se produjeron las primeras reacciones que condujeron al surgimiento de la vida. La energía liberada en la formación de los potentes enlaces covalentes entre el carbono y el oxígeno, disponible al oxidar compuestos orgánicos, es el combustible de todos los seres vivos complejos. Estos cuatro elementos sirven para construir aminoácidos, que son los bloques constitutivos de las proteínas, la sustancia del tejido vivo.
La abundancia relativa en el espacio no siempre tiene reflejo en una abundancia en los planetas; por ejemplo, de los cuatro elementos vitales, solo el oxígeno existe en abundancia en la corteza terrestre.Esto se puede explicar en parte por el hecho de que muchos de estos elementos, como el hidrógeno y el nitrógeno, junto con sus compuestos más básicos, como el dióxido de carbono, el monóxido de carbono, el metano, el amoníaco y el agua, son gaseosos a temperaturas templadas. En la cálida región cercana al Sol, estos compuestos volátiles no pudieron haber jugado un papel significativo en la formación geológica de los planetas. En cambio, fueron capturados en forma gaseosa bajo las jóvenes cortezas, que en su mayor parte estaban formadas por compuestos rocosos no volátiles como el dióxido de silicio (un compuesto de silicio y oxígeno que da cuenta de la abundancia relativa del oxígeno). La liberación de los compuestos volátiles a través de los primeros volcanes habría contribuido a la formación de la atmósfera de los planetas. Los experimentos de Miller demostraron que se pueden formar aminoácidos en una atmósfera primordial por síntesis de los compuestos simples.
A pesar de ello, la liberación de gases volcánica no puede explicar la cantidad de agua que hay en los océanos de la Tierra.La gran mayoría del agua, y podría decirse que del carbono, necesaria para la vida tuvo que venir del sistema solar exterior, lejos del calor solar donde pudo permanecer sólida. Los cometas que impactaron con la Tierra en los primeros años del Sistema Solar habrían depositado vastas cantidades de agua, además de los otros compuestos volátiles necesarios para la vida (incluyendo los aminoácidos), sobre la joven Tierra, proporcionando la chispa de ignición para la evolución de la vida.
Por tanto, aunque hay razones para sospechar que los cuatro «elementos vitales» están disponibles en cualquier parte, es probable que un sistema habitable también necesite un suministro a largo plazo de cuerpos en órbita que siembre los planetas interiores. Sin los cometas es posible que la vida que conocemos no existiría en la Tierra. También existe la posibilidad de que otros elementos distintos de los imprescindibles en la Tierra sean los que proporcionen una base bioquímica para la vida en otros lugares; ver bioquímicas hipotéticas.
Sistemas estelares alternativos
Para determinar la viabilidad de la vida extraterrestre, durante mucho tiempo los astrónomos han centrado su atención en las estrellas parecidas al Sol. Sin embargo, han empezado a explorar la posibilidad de que la vida se pueda formar en sistemas muy distintos al Sistema Solar.
Sistemas binarios
Las estimaciones típicas sugieren que el 50% o más de los sistemas estelares son sistemas binarios. Esto puede deberse en parte a un sesgo de la muestra, ya que las estrellas masivas y brillantes suelen pertenecer a sistemas binarios y son las más fáciles de observar y catalogar; otro análisis más preciso ha sugerido que las estrellas más comunes, que son menos brillantes, no suelen tener compañera y que por tanto hasta dos tercios de todos los sistemas estelares son solitarios.
La separación entre las estrellas en un sistema binario va desde menos de una unidad astronómica (UA, la distancia entre la Tierra y el Sol) a varios cientos. En este último caso, los efectos gravitatorios serán despreciables sobre un planeta que orbite a alguna de las estrellas, y su habitabilidad planetaria no se verá desbaratada a menos que la órbita sea muy excéntrica (ver Némesis, por ejemplo). Sin embargo, cuando la separación sea significativamente menor, puede que una órbita estable sea imposible. Si la distancia de un planeta a su estrella primaria es mayor que un quinto de la distancia mínima a la que se acerca la otra estrella, no está garantizada la estabilidad orbital.22 El mero hecho de que se puedan formar planetas en sistemas binarios lleva tiempo sin estar nada claro, dado que las fuerzas gravitatorias podrían interferir con la formación de planetas. El trabajo teórico de Alan Boss en el Instituto Carnegie ha demostrado que se pueden formar gigantes gaseosos alrededor de sistemas binarios de la misma manera que lo hacen con las estrellas solitarias.
Un estudio de Alfa Centauri, el sistema estelar más cercano al Sol, sugiere que no hay que descartar a los sistemas binarios de la búsqueda de planetas habitables. Centauri A y B están separadas por 11 UA en su acercamiento máximo (23 UA de media), y ambas pueden tener zonas habitables estables. Un estudio de la estabilidad orbital a largo plazo de planetas simulados en este sistema demuestra que los planetas situados aproximadamente a tres UA de cualquiera de las estrellas puede permanecer estable (es decir, el semieje mayor se desvía menos de un 5 por ciento). Una estimación conservadora de la ZH de Centauri A la sitúa a 1,2 o 1,3 UA y la de Centauri B a 0,73 o 0,74 UA, bien adentradas en la región estable en ambos casos.
Sistemas con enana roja
Determinar la habitabilidad de una enana roja puede ayudar a determinar lo común que es la vida en el universo, ya que las enanas rojas constituyen entre el 70 y el 90 por ciento de todas las estrellas de la galaxia. Probablemente las enanas marrones son más numerosas que las enanas rojas. Sin embargo, no se suelen clasificar como estrellas, y nunca podrían sustentar vida tal y como es conocida, ya que el poco calor que emiten desaparece rápidamente.
Durante muchos años, los astrónomos han descartado a las enanas rojas como una potencial morada para la vida. Su pequeño tamaño (desde 0,1 a 0,6 masas solares) significa que sus reacciones nucleares se producen a un ritmo excepcionalmente lento, y emiten muy poca luz (desde un 3% a un 0,01% de la que produce el Sol). Cualquier planeta que orbite alrededor de una enana roja tendría que estar muy cerca de su estrella para alcanzar una temperatura de superficie similar a la de la Tierra; desde 0,3 UA (justo en el interior de la órbita de Mercurio) para una estrella como Lacaille 8760 hasta 0,032 UA para una estrella como Próxima Centauri (un mundo así tendría un año de 6,3 días).A esas distancias, la gravedad de la estrella provocaría un acoplamiento de marea. La cara diurna del planeta apuntaría eternamente hacia la estrella, mientras que la cara nocturna siempre apuntaría en dirección contraria. La única manera de que la potencial vida pudiera evitar el infierno o la congelación sería que el planeta tuviese una atmósfera lo bastante gruesa para transferir el calor de la estrella desde la cara diurna a la nocturna. Durante mucho tiempo se asumió que una atmósfera tan gruesa evitaría que la luz solar llegara a la superficie, impidiendo la fotosíntesis.
Este pesimismo se ha suavizado con la investigación. Los estudios de Robert Harbele y Manoj Joshi, del Ames Research Center de la NASA, en California, han demostrado que la atmósfera de un planeta (suponiendo que estuviera compuesta de los gases de efecto invernadero CO2 y H2O) necesitaría tener sólo 100 mb, el 10% de la atmósfera de la Tierra, para que el calor se transfiera efectivamente hasta la cara nocturna.26 Esto está bien dentro de los niveles requeridos para la fotosíntesis, aunque el agua seguiría estando congelada en la cara nocturna para algunos de sus modelos. Martin Heath, del Greenwich Community College, ha demostrado que también el agua del mar podría circular sin congelarse si las cuencas de los océanos fueran lo bastante profundas para permitir el flujo libre por debajo de la capa de hielo de la cara nocturna. Investigaciones posteriores —incluyendo un estudio de la cantidad de radiación fotosintéticamente activa— sugieren que los planetas acoplados orbitalmente en los sistemas con enana roja serían habitables al menos para las plantas superiores.
El inconveniente del acoplamiento de marea puede desaparecer si se considera la posibilidad de que el planeta tenga un satélite o consideramos al propio satélite como candidato a la habitabilidad.
Si se estudia la habitabilidad en el planeta, el satélite podría haber producido el acoplamiento de la rotación del planeta con su propio movimiento alrededor del mismo, evitando que el planeta muestre siempre la misma cara a la estrella. En el Sistema Solar se encuentra un ejemplo en Plutón, que gira sobre sí mismo en el mismo período (6,4 días) que tarda su satélite Caronte en completar una revolución.
Si se estudia la habitabilidad del satélite, se encuentra que la mayor parte de los satélites del Sistema Solar (incluida la Luna) giran mostrando siempre la misma cara al planeta y algunos de ellos lo hacen en períodos que son aptos para la habitabilidad. No obstante, ningún satélite del Sistema Solar es suficientemente grande como para considerarse habitable.
Sin embargo, el tamaño no es el único factor que puede hacer a una enana roja incompatible con la vida. En un planeta que orbita alrededor de una enana roja, la fotosíntesis sería imposible en la cara nocturna, ya que nunca vería el sol. En la cara diurna, como el sol nunca saldría ni se pondría, las zonas bajo la sombra de una montaña permanecerían así para siempre. La fotosíntesis conocida sería complicada por el hecho de que una enana roja produce la mayor parte de su radiación en el infrarrojo, y en la Tierra este proceso depende de la luz visible. Hay varios aspectos positivos en este escenario. Por ejemplo, muchos ecosistemas terrestres dependen de la quimiosíntesis en lugar de la fotosíntesis, algo que sería posible en un sistema con enana roja. Una posición estática del sol elimina la necesidad de que las plantas dirijan sus hojas hacia él, se tengan que ocupar de los cambios en el patrón de sol/sombra, o tengan que cambiar durante la noche de la fotosíntesis a la energía almacenada. En ausencia de un ciclo día-noche, incluyendo la luz débil de la mañana y la tarde, habrá mucha más energía disponible a un cierto nivel de radiación.
Las enanas marrones son mucho más variables y violentas que sus primos mayores, más estables. A menudo están cubiertas de manchas solares que pueden atenuar su luz hasta un 40% durante meses seguidos, mientras que otras veces emiten llamaradas gigantes que pueden duplicar su brillo en cuestión de minutos.Esta variación sería muy dañina para la vida, aunque también podría estimular la evolución aumentando los ritmos de mutación y cambiando rápidamente las condiciones climáticas.
Sin embargo, las enanas rojas tienen una gran ventaja sobre las demás estrellas en términos de habitabilidad para la vida: viven mucho tiempo. La humanidad tardó 4.500 millones de años en aparecer sobre la Tierra, y la vida tal y como se conoce tendrá condiciones adecuadas durante unos 500 millones de años más.Las enanas rojas, en cambio, pueden vivir durante billones de años, porque sus reacciones nucleares son mucho más lentas que las de las estrellas mayores, lo que significa que la vida podría tener más tiempo para evolucionar y sobrevivir. Es más, aunque la probabilidad de encontrar un planeta en la zona habitable de una enana roja concreta es pequeña, la cantidad total de zona habitable alrededor de todas las enanas rojas juntas es igual a la cantidad total que hay alrededor de estrellas parecidas al Sol, dada su ubicuidad.
Otras consideraciones
«Buenos jupíteres»
Los «buenos jupíteres» son planetas gaseosos gigantes, como Júpiter, que orbitan alrededor de sus estrellas en órbitas circulares lo bastante alejadas de la ZH para que no la perturben pero lo bastante cerca para «proteger» de dos maneras a los planetas terrestres con órbitas más cercanas. Primero, ayudan a estabilizar las órbitas, y por tanto los climas, de los planetas interiores. Segundo, mantienen al sistema solar interno relativamente libre de cometas y asteroides que podrían provocar impactos devastadores.Júpiter orbita alrededor del Sol a unas cinco veces la distancia de la Tierra al Sol. Esta es aproximadamente la distancia a la que debemos esperar encontrar buenos jupíteres en otros lugares. El rol de «portero» que tiene Júpiter quedó ilustrado de un modo espectacular en 1994, cuando el cometa Shoemaker-Levy 9 impactó en el gigante; si la gravedad joviana no hubiera capturado al cometa, podría haber entrado en el sistema solar interior.
En los inicios de la historia del Sistema Solar, Júpiter jugó un papel un tanto contrario: aumentó la excentricidad de la órbita del cinturón de asteroides y permitió a muchos objetos cruzar la órbita de la Tierra y proporcionar al planeta compuestos importantes. Antes de que la Tierra alcanzara la mitad de su masa actual, cuerpos helados de la región de Júpiter y Saturno y pequeños cuerpos del cinturón de asteroides primordial proporcionaron agua a la Tierra por la dispersión gravitatoria de Júpiter y, en menor medida, de Saturno. Así, mientras que hoy los gigantes gaseosos son amables protectores, antes fueron suministradores de material crítico para la habitabilidad.
El papel de los gigantes gaseosos en la habitabilidad de un planeta ha sido cuestionado en los últimos años. En 2008, Horner y Jones demostraron mediante simulaciones informáticas que el efecto gravitacional de Júpiter posiblemente ha causado más impactos en la Tierra de los que ha prevenido.
En contraste, los cuerpos del tamaño de Júpiter que orbiten demasiado cerca de la zona habitable pero no dentro de ella (como en 47 Ursae Majoris), o tenga una órbita muy elíptica que cruce la zona habitable (como en 16 Cygni B), harán muy difícil la existencia de un planeta terrestre en el sistema. Véase la explicación de una zona habitable estable de arriba.
La vecindad galáctica
Los científicos también han considerado la posibilidad de que ciertas zonas de las galaxias (zonas habitables galácticas) sean más adecuadas para la vida que otras; el sistema solar en el que vivimos, en el Brazo de Orión, al borde de la galaxia Vía Láctea, se considera que está en un punto favorable para la vida:
No está en un cúmulo globular, donde la densidad de las estrellas es hostil para la vida, dada la excesiva radiación y perturbaciones gravitatorias. Además, los cúmulos globulares están compuestos principalmente de estrellas viejas, probablemente con pocos metales.
No está cerca de una fuente activa de rayos gamma.
No está cerca del núcleo galáctico, donde de nuevo la densidad estelar aumenta la cantidad de radiación ionizante (por ejemplo, de los magnetares y las supernovas). También se cree que existe un agujero negro supermasivo en el centro de la galaxia, que puede resultar peligroso para cualquier cuerpo cercano.
La órbita circular del Sol alrededor del centro galáctico lo mantienen fuera de los brazos espirales, donde de nuevo las intensas radiaciones y gravedad podrían ser incompatibles con la vida.
Por tanto, lo que necesita un sistema apto para la vida es una relativa soledad. Si el Sol estuviera inmerso en una muchedumbre de sistemas, la probabilidad de estar fatalmente cerca de una fuente de radiación peligrosa aumentaría significativamente. Es más, los vecinos cercanos podrían alterar la estabilidad de varios cuerpos orbitales como los objetos de la nube de Oort y el Cinturón de Kuiper, que podrían causar una catástrofe si se adentran en el sistema solar interno.
Aunque una muchedumbre estelar resulta desventajosa para la habitabilidad, también lo es el aislamiento extremo. Una estrella tan rica en metales como el Sol no se habría formado en las regiones más exteriores de la Vía Láctea, dada la disminución en la abundancia relativa de metales y la ausencia general de formación de estrellas. Por tanto, una situación «suburbana», como la que disfruta nuestro Sistema Solar, es preferible al centro de la galaxia o a las zonas más alejadas.
Impacto de la vida en la habitabilidad
Un añadido interesante a los factores que fomentan la emergencia de la vida es la noción de que la propia vida, una vez formada, se convierte en un factor de habitabilidad por derecho propio. Un ejemplo importante en la Tierra fue la producción de oxígeno a cargo de las antiguas cyanobacterias, y luego de las plantas fotosintéticas, dando como resultado un cambio radical en la composición de la atmósfera terrestre. Este oxígeno resultaría ser fundamental para la respiración de las especies animales posteriores.
Esta interacción entre la vida y la habitabilidad posterior se ha estudiado de varias maneras. La hipótesis Gaia, un tipo de modelo científico de la geobiosfera fundada por sir James Lovelock en 1975, afirma que la vida como un todo fomenta y sostiene unas condiciones adecuadas para ella misma, ayudando a crear un entorno planetario apto para su continuidad; en su versión más dramática, la hipótesis Gaia sugiere que los sistemas planetarios se comportan como un tipo de organismo. Las formas de vida más exitosas cambian la composición del aire, el agua y el suelo de forma que aseguran la continuidad de su existencia, una extensión controvertida de las leyes aceptadas de la ecología.
La consecuencia de que la biota revele una previsión coordinada es cuestionada como acientífica y no falsable. Sin embargo, muchos investigadores de la corriente dominante han llegado a conclusiones parecidas sin aceptar necesariamente la teleología de Lovelock. David Grinspoon ha sugerido una «hipótesis de los mundos vivientes», por la que nuestra comprensión de lo que constituye la habitabilidad no se puede separar de la vida ya existente en un planeta. Además, los planetas que están geológica y meteorológicamente vivos tienen mucha más probabilidad de estar biológicamente vivos, y «un planeta y su vida coevolucionarán».
En su libro El planeta privilegiado, publicado en 2004, Guillermo González y Jay Richards estudian la posible relación entre la habitabilidad de un planeta y su adecuación para observar el resto del universo. Esta idea de una posición «privilegiada» para la vida de la Tierra está cuestionada por sus implicaciones filosóficas, especialmente la violación del principio copernicano.
Assinar:
Postagens (Atom)
Jacques Bergier - Melquisedeque
Melquisedeque aparece pela primeira vez no livro Gênese, na Bíblia. Lá está escrito: “E Melquisedeque, rei de Salem, trouxe pão e vinho. E...