sexta-feira, 8 de abril de 2016

Inflación Cósmica



La inflación cósmica es un conjunto de propuestas en el marco de la física teórica para explicar la expansión ultrarrápida del universo en los instantes iniciales y resolver el llamado problema del horizonte.

Introducción

La inflación fue por primera vez propuesta por el físico y cosmólogo estadounidense Alan Guth en 19811 e independientemente Andrei Linde,y Andreas Albrecht junto con Paul Steinhardt3 le dieron su forma moderna.

Aunque el mecanismo responsable detallado de la física de partículas para la inflación se desconoce, la imagen básica proporciona un número de predicciones que se han confirmado por pruebas observacionales. La inflación es actualmente considerada como parte del modelo cosmológico estándar de Big Bang caliente. La partícula elemental o campo hipotético que se piensa que es responsable de la inflación es llamada inflatón.

La inflación sugiere que hubo un periodo de expansión exponencial en el Universo muy pre-primigenio. La expansión es exponencial porque la distancia entre dos observadores fijos se incrementa exponencialmente, debido a la métrica de expansión del Universo (un espacio-tiempo con esta propiedad es llamado un espacio de Sitter). Las condiciones físicas desde un momento hasta el siguiente son estables: la tasa de expansión, dada por la constante de Hubble, es casi constante, lo que lleva a altos niveles de simetría. La inflación es a menudo conocida como un periodo de expansión acelerada porque la distancia entre dos observadores fijos se incrementa a una tasa acelerante cuando se mueven alejándose.

El 17 de marzo de 2014, los astrofísicos del BICEP2 anunciaron la presunta detección de ondas gravitacionales inflacionarias al observar modos-B en la polarización del fondo cosmico de microondas. Los modos B en el fondo cósmico de microondas, podrían ser debidos a la teoría de la inflación de Guth y para el Big Bang.

Motivación

La inflación resuelve varios problemas en la cosmología del Big Bang que fueron señalados en los años 1970.Estos problemas vienen de la observación que para parecerse a como es el Universo hoy, el Universo tendría que haber empezado de unas condiciones iniciales "especiales" o muy puestas a punto cerca del Big Bang. La inflación resuelve estos problemas proporcionando un mecanismo dinámico que conduce al Universo a este estado especial, de esta manera formando un Universo como el nuestro mucho más natural en el contexto de la teoría del Big Bang.

La inflación cósmica tiene el efecto importante de resolver heterogeneidades, anisotropía y la curvatura del espacio. Esto pone al Universo en un estado muy simple, en el que está completamente dominado por el campo inflatón y las únicas heterogeneidades significativas son las débiles fluctuaciones cuánticas en el inflatón. La inflación también diluye partículas pesadas exóticas, como los monopolos magnéticos predichos por muchas extensiones del modelo estándar de física de partículas. Si el Universo estuviese lo suficientemente caliente como para formar tales partículas anteriores al periodo de inflación, no serían observados en la Naturaleza, ya que serían tan raras que es bastante probable que no haya ninguna en el Universo observable. Juntos, estos efectos se llaman el "teorema de no-pelo inflacionario"9 por analogía con el teorema de no pelo para los agujeros negros.

El "teorema de ausnecia de pelo" es esencialmente porque el Universo se expande por un factor enorme durante la inflación. En un Universo en expansión, las densidades de energía generalmente cae según se incrementa el volumen del Universo. Por ejemplo, la densidad de la materia (polvo) "fría" ordinaria es proporcional a la inversa del volumen: cuando las dimensiones lineales se duplican, la densidad de energía cae en un factor de ocho. La densidad de energía en la radiación cae incluso más rápidamente según se expande el Universo: cuando las dimensiones lineales se duplican, la densidad de energía de radiación cae en un factor de dieciséis. Durante la inflación, la densidad de energía en el campo inflatón es casi constante. Sin embargo, la densidad de energía en heterogeneidades, curvatura, anisotropías y partículas exóticas está descendiendo y a con una inflación suficiente estas se hacen insignificantes. Esto deja un Universo vacío, plano y simétrico que es llenado de radiación cuando la inflación termina.

Un requisito clave es que la inflación tiene que continuar lo suficiente para producir el Universo observable actual de un simple, pequeño volumen de Hubble inflacionario. Esto es necesario para asegurar que el Universo parece plano, homogéneo e isótropo en las escalas observables mayores. Este requisito está generalmente pensado para satisfacerse si el Universo se expandió con un factor de al menos 1026 durante la inflación.Al final de la inflación, ocurre un proceso llamado recalentamiento, en el que las partículas inflatón decaen en la radiación que empieza el caliente Big Bang. No se conoce cuando duró la inflación, pero normalmente se piensa que fue extremadamente corta comparado con la edad del Universo. Asumiendo que la escala de energía de inflación está entre 1015 y 1016 eV, como se sugiere en los modelos más simples, el periodo de inflación responsable del Universo observable probablemente duró unos 10-33 segundos.

Problema de la planitud y el ajuste fino

Existe evidencia de que a gran escala nuestro universo parece muy cercano a la planitud, y por tanto su curvatra global es cerca a cero K \approx 0 (obviamente localmente esto no se cumple, especialmente cerca de estrellas supermasivas o agujeros negros). Dado que el parámetro de densidad Ω se relaciona con la curvatura K, la constante de Hubble H y el factor de escala a mediante la relación:



sólo si inicialmente si K = 0, el valor de Ω se mantiene constante (en ese caso, Ω = 1). Pero si la curvatura no es exactamente cero, entonces Ω(t) se aleja de 1 a medida que el universo se expande, de hecho para un universo como el nuestro dominado por la materia:



Por lo que, si actualmente el valor de Ω es cercano a 1, eso implica que al principio del universo todavía era mucho más cercano a 1, es decir, cerca de la planitud ideal. Las estimaciones sugieren que en el momento del inicio de la nucleosíntesis debió tenerse:



Como parece improbable que por simple azar Ω haya quedado tan cerca del valor 1, la inflación es un mecanismo que podría explicar porqué el universo quedó tan finamente sintonizado alrededor del valor Ω = 1, ya que muchos cosmólogos consideran que no es azar que de entre muchos posibles valores el universo tenga un valor tan cercano precisamente al valor que implica planitud.

Problema del horizonte

El problema del horizonte es el problema de determinar por qué el Universo parece estadísticamente homogéneo e isótropo de acuerdo con el principio cosmológico. Las moléculas de gas en un bote de gas están distribuidas homogénea e isotrópicamente porque están en equilibrio térmico: el gas a través del bote ha tenido suficiente tiempo para interactuar, para disipar las heterogeneidades y las anisotropías. La situación es bastante diferente en el modelo del Big Bang sin inflación, porque la expansión gravitacional no da al Universo primigenio suficiente tiempo para equilibrarse. En un Big Bang en el que solo hay la materia y la radiación conocida en el modelo estándar, dos regiones ampliamente separadas del Universo observable no pueden haberse equilibrado porque nunca han entrado en contacto causal: en la historia del Universo, volviendo a los primeros tiempos, no ha sido posible enviar una señal de luz entre las dos regiones. Porque no tienen interacción, es imposible que se equilibren. Esto es porque el radio de Hubble en un Universo dominado de materia o radiación se expande mucho más rápidamente que las longitudes físicas y tales puntos que están incomunicados se comunican. Históricamente, dos soluciones propuestas fueron el Universo Fénix de Georges Lemaître,16 el relacionado universo oscilante de Richard Tolman,y el Universo Mixmaster de Charles Misner.Lemaître y Tolman propusieron que un Universo experimentando varios ciclos de contracción y expansión podría llegar a un equilibrio térmico. Sus modelos fallaban, sin embargo, por la acumulación de la entropía a través de varios ciclos. Misner hizo la (últimamente incorrecta) conjetura de que el mecanismo Mixmaster, que hacía el Universo más caótico, podría conducir a la homogeneidad estadística y a la isotropía.

Problema de la monotonía

Otro problema es el problema de la monotonía (que algunas veces se conoce como una de las coincidencias de Dicke, con el otro siendo el problema de la constante cosmológica).En los años 1960 se conocía que la densidad de materia en el Universo era comparable a la densidad crítica necesaria para un Universo plano (esto es, un Universo cuya gran escala geométrica es la usual geometría euclidiana, en vez de una geometría no euclídea hiperbólica o esférica. Por tanto, a pesar de la forma del Universo, la contribución de la curvatura espacial a la expansión del Universo no podría ser mucho mayor que la contribución de la materia. Pero según se expande el Universo, la curvatura del desplazamiento hacia el rojo es más lenta que la materia y la radiación. Extrapolando en el pasado, se presenta un problema de puesta a punto porque la contribución de la curvatura al Universo tendría que ser exponencialmente pequeña (dieciséis órdenes de magnitud menos que la densidad de radiación en la nucleosíntesis del Big Bang, por ejemplo). Este problema está exacerbado por las recientes observaciones de la radiación de fondo de microondas que han demostrado que el Universo es plano hasta la precisión de un porcentaje pequeño.

Problema del monopolo magnético

El problema del monopolo magnético (algunas veces llamado el problema de las reliquias exóticas) es un problema que sugiere que si el Universo primigenio estaba muy caliente, se produciría un gran número de monopolos magnéticos estables y muy pesados. Este problema junto con la Teoría de la gran unificación, fueron populares en los años 1970 y los años 1980, que proponían que a altas temperaturas (como en el Universo primigenio) la fuerza electromagnética, las fuerzas nucleares fuerte y débil no son realmente fuerzas fundamentales pero aparecen debido a la ruptura espontánea de simetría electrodébil de una teoría de gauge.Estas teorías predicen varias partículas pesadas estables que no se han observado todavía en la naturaleza. El más notorio es el monopolo magnético, un tipo de campo magnético estable y pesado.Los monopolos se espera que sean copiosamente producidos en la Teoría de la gran unificación a altas temperaturas y deberían haber persistido hasta la actualidad.Para precisiones muy altas, los monopolos magnéticos parecen no existir en la naturaleza,mientras que de acuerdo a la teoría del Big Bang (sin la inflación cósmica) deberían haber sido copiosamente producidos en el caliente y denso Universo primigenio, ya que se convirtió en el constituyente primario del Universo.

Otras cuestiones

El mecanismo de cascada de división y elongación de fotones (CDEF) que precede la formación de materia fue propuesto para explicar la elongación de la radiación de fondo cósmico (Cosmic Microwave Background: CMB) por Alfredo Bennun, Rutgers University. Este modelo fue sometido a una simulación donde se propone que la energía primordial se pueda describir como una radiación, lo cual permite caracterizar la misma en función de su longitud de onda aunque de naturaleza física no esté establecida. Así esta radiación de ultra rápida frecuencia (v) y ultra pequeña longitud de onda (λ) podría evaluarse como fotones de muy alta energía limitada por la constante de Planck (10^{22} Mega Electrón Volts). Éstos serían inicialmente confinados dentro de un espacio tridimensional del orden de un radio Fermi 10^{-13} cm) evitando la naturaleza puntual y por lo tanto no física de una singularidad espaciotemporal. Se consideró la cascada como una secuencia reiterada 66 veces o sea, de (1 x 2)^{66} divisiones de los fotones iniciales pero el incremento inicial del radio del universo se lo expresa en base 4 y exponencial 66 o (1x2x2)^{66} porque en cada división o partición de los fotones simultáneamente se dobla su número y la amplitud de longitud de onda. Ambos procesos no están limitados por la velocidad de la propagación de la luz en el espacio porque implican transiciones de la amplitud del espacio tiempo. Este mecanismo expansivo y antagónico a la atracción gravitatoria es por lo tanto asimilable a la constante cosmológica de Einstein y es totalmente diferente al propuesto por Alan Guth aunque se obtienen valores similares a los que son estándar para caracterizar el final del escenario de inflación.

Historia

La inflación fue propuesta en 1981 por Alan Guth como un mecanismo para resolver estos problemas.Hubo varios precursores, el más importante el trabajo de Willem de Sitter que demostró la existencia de un altamente simétrico Universo inflacionista, llamado espacio de Sitter. De Sitter, sin embargo, no lo aplicó a ningún problema cosmológico que interesaba a Guth.Contemporáneo con Guth, Alexei Starobinsky argumentó que las correcciones cuánticas de la gravedad reemplazarían la singularidad inicial del Universo con un estado de expansión exponencial.Demosthenes Kazanas anticipó parte del trabajo de Guth sugiriendo que la expansión exponencial podía eliminar el horizonte de partículas y tal vez resolver el problema del horizonte, y Sato sugirió que una expansión exponencial podría eliminar las paredes de dominio (otro tipo de reliquia exótica).Sin embargo, Guth fue el primero en ensamblar un dibujo completo de como todas estas condiciones iniciales se podían resolver mediante un estado de expansión exponencial.

Guth propuso que según se enfriaba el Universo temprano, fue atrapado en un falso vacío con una densidad de energía alta, que se parece a una constante cosmológica. Según el Universo primigenio se enfriaba se vio atrapado en un estado metaestable (estaba superenfriado) que podía solo decaer a través del proceso de nucleación de pompas vía el efecto de túnel cuántico. Las burbujas del vacío verdadero se forman espontáneamente en el mar de falso vacío y rápidamente empieza a expandirse a la velocidad de la luz. Guth reconoció que este modelo era problemático porque el modelo no recalentaba apropiadamente: cuando las burbujas nucleaban, no generaban ninguna radiación. La radiación solo podía ser generada en colisiones entre muros de burbujas. Pero si la inflación duró lo suficiente como para solucionar los problemas de las condiciones iniciales, las colisiones entre las burbujas llegaron a ser excesivamente raras. (Incluso aunque las burbujas se expandan a la velocidad de la luz, las burbujas están lejos de que la expansión del espacio esté causando que la distancia entre ellos se expanda mucho más deprisa).

Este problema fue resuelto por Andrei Linde e independientemente por Andreas Albrecht y Paul Steinhardt en un modelo llamado nueva inflación o inflación de rotación lenta (el modelo de Guth se conoció a partir de entonces como inflación antigua). En este modelo, en vez de hacer un túnel desde un estado de falso vacío, la inflación ocurrió por un campo escalar rotando hacia abajo de una montaña de energía potencial. Cuando el campo rota muy lentamente comparado con la expansión del Universo, ocurre la inflación. Sin embargo, cuando la montaña se vuelve más empinada, la inflación termina y se puede dar el recalentamiento.

Eventualmente, se mostró que la nueva inflación no produce un Universo perfectamente simétrico, sino que se generan débiles fluctuaciones cuánticas en el inflatón. Estas débiles fluctuaciones formaron las semillas primigenias para todas las estructuras creadas en el Universo posterior. Estas fluctuaciones fueron por primera vez calculadas por Viatcheslav Mukhanov y G. V. Chibisov en la Unión Soviética analizando el modelo similar de Starobinsky.En el contexto de la inflación, obtuvieron los resultados independientemente del trabajo de Mukhanov y Chibisov en el Nuffield Workshop de 1982 sobre el Universo Primigenio en la Universidad de Cambridge.Las fluctuaciones fueron calculadas por cuatro grupos trabajando por separado durante la trayectoria del grupo de trabajo: Stephen Hawking,Starobinsky,Guth y So-Young Pi;y James M. Bardeen, Paul Steinhardt y Michael Turner.

Estado observacional

La inflación es un mecanismo concreto para realizar el principio cosmológico que es la base de nuestro modelo de cosmología física: es responsable de la homogeneidad y la isotropía del Universo observable. Además cuenta para la monotonía observada y la ausencia de monopolos magnéticos. Como el trabajo temprano de Guth, cada una de estas observaciones ha recibido confirmaciones posteriores, de modo impresionante por las observaciones detalladas de la radiación de fondo de microondas hechas por el satélite WMAP.Este análisis muestra que el Universo es plano hasta una precisión de al menos un pequeño porcentaje y es homogéneo e isótropo de una parte en 10.000.

Además, la inflación predice que las estructuras visibles en el Universo hoy se formaron a través del colapso gravitacional de perturbaciones que se generaron como fluctuaciones mecánicas cuánticas en la época inflacionaria. La forma detallada del espectro de perturbaciones llamado un Campo Gaussiano aleatorio casi invariante (o espectro Harrison-Zel'dovich) es muy específico y tiene solo dos parámetros libres, la amplitud del espectro y el índice espectral que mide las ligeras desviaciones de la invarianza escala predicha por la inflación (la escala con invarianza perfecta se corresponte con el Universo idealizado de Sitter).La inflación predice que las perturbaciones observadas deberían estar en equilibrio térmico cada una con cada otra (éstas son llamadas perturbaciones adiabáticas o isentrópicas). Esta estructura de perturbaciones ha sido confirmada por el satélite WMAP y otros experimentos del fondo de radiación de microondas,y la medición de galaxias, especialmente el actual Sloan Digital Sky Survey.Estos experimentos han demostrado que una parte entre 10.000 de las heterogeneidades observadas tienen exactamente la forma predicha por la teoría. Además, ha sido medida la ligera desviación de la invarianza de escala. El índice espectral, ns es igual a uno para un espectro de escala invariante. Los modelos más simples de la inflación predicen que esta cantidad está entre 0.92 y 0.98.El satélite WMAP ha medido ns = 0.95 y demuestra que es diferente de uno a dos niveles de la desviación estándar (2σ). Esto se considera una confirmación importante de la teoría de la inflación.

Se han propuesto varias teorías de la inflación que hacen predicciones radicalmente diferentes, pero que generalmente tienen mucho más ajuste fino de lo necesario.Como modelo físico, sin embargo, la inflación es más valorable al predecir robustamente las condiciones iniciales del Universo basándose en solo dos parámetros ajustables: el índice espectral (que solo puede cambiar en un pequeño rango) y la amplitud de las perturbaciones. Excepto en modelos artificiales, esto es verdad a pesar de cómo se realiza la inflación en la física de partículas.

Ocasionalmente, los efectos se obserca que parecen contradecir los modelos más simples de inflación. Este primer año de datos de WMAP sugiere que el espectro no tiene por qué ser casi invariante, sino que puede tener una ligera curvatura.Sin embargo, el tercer año de datos reveló que el efecto era una anomalía estadística.Otro efecto que ha sido remarcado desde el primer satélite sobre la radiación de fondo de microondas, el Cosmic Background Explorer (COBE): la amplitud del momento del cuadrupolo del fondo de radiación de microondas es inesperadamente bajo y los otros multipolos bajos parecen estar preferentemente alineados con el plano eclíptico. Se ha dicho que esta es una firma de no-gausianidad y contradice los modelos más simples de la inflación. Otros sugieren que el efecto se puede deber a otros efectos físicos nuevos, a contaminación de fondo o incluso a la desviación de publicación.

Un programa experimental está en proceso de pruebas más profundas sobre la inflación con medidas más precisas del fondo de radiación de microondas. En particular, las medidas de alta precisión de los llamados "modos B" de la polarización de la radiación de fondo de microondas sería evidente la radiación gravitacional producida por la inflación y se demostraría si la escala de energía de inflación predicha por los modelos más simples (1015-1016 eV) es correcta.Estas medidas se esperaba que fueran realizadas por el Planck, aunque no está claro que la señal sea visible o si la contaminación de las fuentes de fondo interferirán con estas medidas.Otras medidas venideras, como las de la radiación de 21 centímetros (radiación emitida y absorbida del hidrógeno neutro anterior a las primeras estrellas se encendieran), puede medir el espectro de potencia con incluso una resolución mayor que el fondo de radiación de microondas y las mediciones de galaxias, aunque no se conoce si estas medidas serán posibles o si la interferencia con las fuentes de radiación en la Tierra y en la galaxia serán demasiado grandes.

Después de 2006, no está claro que la relación de cualquier periodo de inflación cósmica tenga que ver con la energía oscura. La energía oscura es ampliamente similar a la inflación y se piensa que es la causante de la aceleración de la expansión del Universo actual. Sin embargo, la escala de energía de la energía oscura es muy inferior, 10-12 eV, unos 27 órdenes de magnitud menos que la escala de la inflación.

Estado de la teoría

En la primera propuesta de Guth, se pensó que el inflatón era el campo de Higgs, el campo que explica la masa de las partículas elementales.Ahora se cree que el inflatón no puede ser el campo de Higgs (aunque el reciente descubrimiento en el CERN del bosón de Higgs está propiciando la aparición de nuevos modelos que sí usan el campo de Higgs). Otros modelos de inflación confían en las propiedades de las teorías de la gran unificación.3 Como los modelos de la Teoría de Gran Unificación más simples han fallado, muchos físicos piensan que la inflación estará incluida en una teoría supersimétrica como la teoría de cuerdas o una teoría de la gran unificación supersimétrica.Una sugerencia que promete es la inflación brana. Hasta el momento, sin embargo, la inflación se comprende principalmente por sus predicciones detalladas de las condiciones iniciales para el Universo primigenio caliente y la física de partículas está ampliamente modelada ad hoc. Como tal, a pesar de las estrictas pruebas observacionales que la inflación ha pasado, hay muchas preguntas abiertas sobre la teoría.

Problema del ajuste fino

Uno de los desafíos más grandes para la inflación surge de la necesidad de ajuste fino en las teorías inflacionarias. En la nueva inflación, las condiciones de rotación lenta se deberían para que ocurra la inflación. Las condiciones de rotación lenta dicen que el potencial tiene que ser uniforme (comparado con la gran energía del vacío y que las partículas de inflatón tienen que tener una masa pequeña.Para que la nueva teoría de la inflación de Linde, Albrecht y Steinhardt sea posible, por tanto, parece que el Universo tiene un campo escalar con un potencial especialmente plano y unas condiciones iniciales especiales.

Andrei Linde propuso una teoría conocida como inflación caótica en la que sugirió que las condiciones para la inflación están realmente satisfechas genéricamente y la inflación ocurrirá en cualquier Universo que virtualmente empieza en un estado de energía caótico y tenga un campo escalar con energía potencial no acotada.Sin embargo, en su modelo el campo inflatón necesariamente toma valores mayores de una unidad de Planck: por esta razón, a menudo se llaman modelos de campos grandes y los nuevos modelos de inflación se llaman modelos de campos pequeños. En esta situación, las predicciones de la teoría defectiva de campos se piensa que no son válidas y la renormalización debería causar grandes correcciones que prevendrían la inflación.Este problena no ha sido todavía resuelto y algunos cosmólogos discuten que los modelos de campo pequeño, en los que la inflación puede ocurrir a escalas de energía mucho menores, son mejores modelos de inflación. Mientras que la inflación depende de la teoría de campos cuántica (y la aproximación semiclásica a la gravedad cuántica) de manera importante, no ha sido completamente reconciliada con estas teorías.

Robert Brandenberger ha comentado sobre el ajuste fino en otra situación.La amplitud de las heterogeneidades primigenias producidas por la inflación está directamente relacionada con la escala de energía de inflación. Hay fuertes suposiciones de que esta escala es de unos 1016 eV o 10−3 veces la energía de Planck. La escaña natural es ingenuamente como la escala de Planck de tal manera que este pequeño valor se podría ver como otra forma de ajuste fino (llamado problema de la jerarquía): la densidad de energía dada por el potencial escalar está por debajo de 10−12 comparada con la densidad de Planck. Esto no es normalmente considerado como un problema crítico, sin embargo, porque la escala de la inflación se corresponde naturalmente a la escala de la unificación de gauge.

Inflación eterna

La inflación cósmica parece ser eterna de la forma en la que es teorizada. Aunque la nueva inflación es clásicamente la rotación hacia abajo del potencial, las fluctuaciones cuánticas pueden a veces hacer que vuelva a niveles anteriores. Estas regiones en las que el inflatón fluctúa ascendentemente se expande mucho más rápido que las regiones en que el inflatón tiene una energía potencial menor y tiende a dominar en términos de volumen físico. Este estado estacionario, fue desarrollado por primera vez por Vilenkin,se llama "inflación eterna". Se ha demostrado que cualquier teoría inflacionaria con un potencial no acotado es eterna.Es una creencia popular entre los físicos que el estado estacionatio no puede continuar para siempre en el pasado.El espacio-tiempo inflacionario, que es similar al espacio de Sitter, está incompleto sin una región de contracción. Sin embargo, a pesar del espacio de Sitter, las fluctuaciones en un espacio inflacionario contrayente se colapsará para formar una singularidad gravitacional, un punto donde las densidades se llegan a ser infinito. Por tanto, es necesario tener una teoría para las condiciones iniciales del Universo. Esta interpretación fue discutida por Linde.

Condiciones iniciales

Algunos físicos han intentado evitar este problema proponiendo modelos para un Universo eternamente inflacionista sin origen.Estos modelos proponen una hipersuperficie "inicial" especial cuando el Universo tiene un tamaño mínimo y en el que el tiempo empieza.

Otras propuestas intentan describir la creación nihilista del Universo de la cosmología cuántica y la consiguiente inflación. Vilenkin propuso un escenario así.Hartle y Hawking propusieron el estado Hartle-Hawking para la creación inicial del Universo en que la inflación sucede naturalmente.

Alan Guth ha descrito el Universo inflacionario como la "última comida libre":nuevos Universos, pareceidos al nuestro que están continuamente produciéndose en un fondo vasto inflacionario. Las interacciones gravitacionales, en este caso, sortean (pero no violan) ni la primera ley de la termodinámica o conservación de la energía ni la segunda ley de la termodinámica o el problema de la flecha del tiempo. Sin embargo, mientras que hay un consenso de que esto soluciona el problema de las condiciones iniciales, algunos lo han disputado, ya que es mucho más probable que el Universo provenga de una fluctuación cuántica. Donald Page ha sido un crítico ferreo de la inflación por esta anomalía.Acentuó que la flecha del tiempo termodinámica necesitaba condiciones iniciales de baja entropía, que podrían ser altamente probables. De acuerdo con ellos, más que resolver este problema, la teoría de la inflación la agrava más - el recalentamiento al final de la era de la inflación incrementa la entropía, haciéndola necesaria para que el estado inicial del Universo sea incluso más ordenado que en otras teorías del Big Bang sin fase de inflación.

Hawking y Page posteriormente encontraron resultados ambiguos cuando intentaron calcular la probabilidad de la inflación en el estado inicial de Hartle-Hawking.Otros autores han discutido esto, ya que la inflación es eterna, la probabilidad de que no ocurra nunca no es precisamente cero, una vez que empieza, la inflación se perpetua a sí misma y rápidamente domina el Universo. Recientemente, Lisa Dyson, Matthew Kleban y Leonard Susskind discutieron la utilizando el Principio Holográfico que la inflación espontánea es excesivamente improbable.Albrecht y Lorenzo Sorbo han discutido que la probabilidad de un cosmos inflacionario, consistente con las observaciones actuales, emergiendo de una fluctuación aleatoria de algún estado pre-existente, comparada con un cosmos no-inflacionario abrumadoramente favorece el escenario inflacionario, simplemente porque la "semilla" suma de energía no-gravitacionales requeridas para el cosmos inflacionario es mucho menos que cualquiera requerida para una alternativa no-inflacionaria, que tiene mayor peso que cualquier consideración entrópica.

Otro problema que ha sido ocasionalmente mencionado es el problema trans-Planckiano o los efectos trans-Planckianos.Como la escala de energía de inflación y la escala de Planck están relativamente cerca, algunas de las fluctuaciones cuánticas que han construido la estructura de nuestro Universo fueron más pequeñas que la longitud de Planck antes de la inflación. Por tanto, podría haber correcciones de la física de Planck, en particular en la desconocida teoría cuántica de la gravedad. Ha habido algunos desacuerdos sobre la magnitud de este efecto: sobre si está justo en el umbral de la detectabilidad o si es completamente indetectable.

Recalentamiento

El final de la inflación es conocido como recalentamiento o termalización porque la gran energía potencial se descompone en partículas y rellena el Universo con radiación. Como la naturaleza del inflatón no se conoce, este proceso sigue estando pobremente comprendido, aunque se cree que toma lugar a través de una resonancia paramétrica.

Inflación no eterna

Otro tipo de inflación, llamada inflación híbrida, es una extensión de la nueva inflación. La inflación introduce campos escalares adicionales, de tal manera que uno de esos campos es responsable de la inflación normal de rotación lenta, otro dispara el fin de la inflación: cuando la inflación ha durado lo suficiente, llega a ser favorable para el que el segundo campo se descomponga en un estado de energía mucho menor.Al contrario que otros modelos de inflación, muchas versiones de inflación híbrida no son eternas.En la inflación híbrida, uno de los campos escalares es responsable de gran parte de la densidad de energía (determinando así la tasa de la expansión), mientras que los otros son responsables para la rotación lenta (determinando así el periodo de la inflación y su terminación). Estas fluctuaciones en el antiguo inflatón no afectaría al fin de la inflación, mientras que las fluctuaciones posteriores no afectarían a la tasa de expansión. Por tanto, la inflación híbrida no es eterna. Cuando el segundo inflatón (de rotación lenta) está en la parte más baja de su potencial, cambia la localización del mínimo de los primeros potenciales de inflatón, que conduce a una rotación rápida de este inflatón para que disminuya su potencial, conduciendo al fin de la inflación.

Inflación y la cosmología de cuerdas

El descubrimiento de las compactaciones de flujo han abierto el camino para reconciliar la inflación y la teoría de cuerdas.Una nueva teoría, llamada inflación brana sugiere que la inflación aparece de una D-brana cayendo en una profunda garganta Klebanov-Strassler. Esta es una teoría muy diferente de la inflación ordinaria (está gobernada por la acción de Dirac-Born-Infeld que es muy diferente de la otra) y la dinámica sigue sin comprenderse. Parece que condiciones muy especiales son necesarias para que ocurra la inflación en el túnel entre dos vacíos en el mar de cuerdas (el proceso de tunelado entre dos vacíos es una forma de inflación antigua, pero la nueva inflación tiene que ocurrir entonces por algún otro mecanismo.

Alternativas a la inflación

La teoría de cuerdas necesita que, además de las tres dimensiones que observamos, existan dimensiones adicionales que están atrofiadas (véase también teoría de Kaluza-Klein). Las dimensiones extra aparecen como componentes frecuentes de los modelos de supergravedad y otras alternativas a la gravedad cuántica. Esto provoca la pregunta: ¿por qué las cuatro dimensiones del espacio-tiempo se vuelven grandes y el resto se vuelve inobservablemente pequeñas? Un intento de abordar esta pregunta, llamada cosmología de las cuerdas gaseosas, fue propuesta por Robert Brandenberger y Cumrun Vafa.Este modelo se centra en la dinámica del Universo primigenio considerada como un gas caliente de cuerdas. Brandenberger y Vafa demostraron que una dimensión de espacio-tiempo solo se podía expandir si las cuerdas enrolladas se podían aniquilar eficientemente las unas a las otras. Cada cuerda es un objeto unidimensional y los números de dimensiones más grandes en que dos cuerdas se cruzarán genéricamente (y presumiblemente se aniquilará) es tres. Por tanto, se discute que el número más probable de grandes dimensiones espaciales no-compactas es tres. Los trabajos actuales en este modelo se centran en si puede tener éxito en estabilizar el tamaño de las dimensiones atrofiadas y producir el espectro correcto de la densidad de perturbaciones primordiales. Desde un punto de vista reviente.

La ecpirótica y los modelos cíclicos se consideran también competidores de la inflación. Estos modelos solucionan el problema del horizonte a través de una época de expansión anterior al Big Bang y entonces generar el espectro requerido de la densidad de perturbaciones primigenia durante una fase de contracción conduciendo a un Big Crunch. El Universo pasa a través del Big Crunch y emerge en una fase caliente del Big Bang. En este sentido hay reminiscencias del "universo oscilante" propuesto por Richard Chace Tolman: sin embargo en el modelo de Tolman la edad total del Universo es necesariamente finita, mientras que en estos modelos no es tan necesaria. Si se puede producir un espectro correcto de densidad de fluctuaciones y si el Universo puede navegar satisfactoriamente de un Big Bang a un Big Crunch sigue siendo un tema de controversia y de investigación actual.

Críticas a la inflación

Desde su introducción por Alan Guth en 1981, el paradigma inflacionario ha estado continuamente de moda entre los cosmólogos. Aclamado como la culminación del modelo estándar del big bang, ha sido presentado en la literatura de divulgación científica e incluso en los libros de texto de cosmología como un resultado establecido y comprobado de la investigación. Sin embargo, un número creciente de físicos, matemáticos y filósofos de la ciencia lo han puesto en duda, señalando sus defectos, lagunas y promesas incumplidas, y su falta de apoyo empírico. En 1999, John Earman y Jesús Mosterín publicaron un análisis crítico minucioso de la cosmología inflacionaria, concluyendo que “todavía carecemos de razones válidas para admitir ninguno de los modelos de la inflación en el núcleo estándar de la cosmología”.

Se ha planteado la cuestión de si los presuntos problemas que la inflación estaría llamada a resolver (desde la ausencia de monopolos magnéticos a la uniformidad y planitud del universo observable) no podrían ser seudoproblemas, ya que los monopolos magnéticos no tienen nada que ver con el big bang y que la aceptación de condiciones iniciales o de ligadura en los modelos matemáticos de la física es una práctica frecuente y bien establecida. En cualquier caso, y como ha venido señalando Roger Penrose desde 1986, a fin de poder funcionar, la inflación requiere que se den condiciones iniciales extremadamente específicas, por lo que el problema (o seudoproblema) de las condiciones iniciales no se resuelve en modo alguno: “Hay algo fundamentalmente erróneo en el intento de explicar la uniformidad del universo temprano como resultado de un proceso de termalización. […] En efecto, si la termalización hace algo […], entonces representa un incremento definitivo de la entropía. Por tanto, el universo habría tenido que ser todavía más especial antes de la termalización que después”.El problema de las condiciones iniciales específicas o finamente ajustadas no solo no se habría resuelto, sino que se habría agravado.

El paradigma inflacionario predice y explica la inflación invocando el campo inflatón, que no coincide ni se relaciona con ningún campo físico conocido. Una crítica recurrente se refiere a la arbitrariedad de la curva del potencial de energía del inflatón, que parece ser un mero artilugio ad hoc para acomodar cualesquiera datos que podamos encontrar. Resulta significativo que Paul J. Steinhardt, uno de los fundadores de la cosmología inflacionaria, recientemente se haya convertido en uno de sus críticos más severos. Llama ‘inflación mala’ a un periodo de expansión acelerada que desemboca en un resultado que contradice a las observaciones, e ‘inflación buena’ al que es compatible con ellas: “No solo es la inflación mala más probable que la inflación buena, sino que la ausencia de inflación es más probable que ambas. […] Roger Penrose ha considerado todas las configuraciones posibles de los campos inflatón y gravitacional. Algunas de estas configuraciones conducen a la inflación. Otras configuraciones conducen directamente a un universo uniforme y plano –sin inflación. El resultado de un universo plano es improbable en general. Pero la conclusión chocante de Penrose, sin embargo, es que la obtención de un universo plano sin inflación es mucho más probable que con inflación –por un factor de 10 elevado a la potencia de googol (10 elevado a 100)".

Cosmología Física



La cosmología física, es la rama de la astrofísica, que estudia la estructura a gran escala y la dinámica del Universo. En particular, trata de responder las preguntas acerca del origen, la evolución y el destino del Universo.

La cosmología física, tal y como se comprende actualmente, comienza en el siglo XX con el desarrollo de la Teoría general de la relatividad de Albert Einstein y la mejora en las observaciones astronómicas de objetos extremadamente distantes. Estos avances hicieron posible pasar de la especulación a la búsqueda científica de los orígenes del universo y permitió a los científicos establecer la Teoría del Big Bang que se ha convertido en el modelo estándar mayoritariamente aceptado por los cosmólogos debido a el amplio rango de fenómenos que abarca y a las evidencias observacionales que lo apoyan, aunque todavía existe una minoría de investigadores que presenten otros puntos de vista basados en alguno de los modelos cosmológicos alternativos.

La cosmología física trata de entender las grandes estructuras del universo en el presente como las galaxias, agrupaciones galácticas y supercúmulos, utilizar los objetos más distantes y energéticos (cuásares, supernovas y GRBs) para entender la evolución del universo y estudiar los fenómenos ocurridos en el universo primigenio cerca de la singularidad inicial (inflación cósmica, nucleosíntesis primordial y radiación de fondo de microondas).

Historia de la física cosmológica

La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de los acontecimientos detallados a continuación:

1915-16. Albert Einstein formula la Teoría General de la Relatividad que será la teoría marco de los modelos matemáticos del universo. Al mismo tiempo formula el primer modelo matemático del universo conocido como Universo Estático donde introduce la famosa constante cosmológica y la hipótesis conocida como Principio Cosmológico que establece que universo es homogéneo e isótropo a gran escala, lo que significa que tiene la misma apariencia general observado desde cualquier lugar.
1916-1917. El astrónomo Willem de Sitter formula un modelo estático de universo vacío de materia con la constante cosmológica donde los objetos astronómicos alejados tenían que presentar corrimientos al rojo en sus líneas espectrales.
1920-21. Tiene lugar el Gran Debate entre los astrónomos Heber Curtis y Harlow Shapley que estableció la naturaleza extragaláctica de las nebulosas espirales cuando se pensaba que la Vía Láctea constituía todo el universo.
1922-24. El físico ruso Alexander Friedmann publica la primera solución matemática a las ecuaciones de Einstein de la Relatividad General que representan a un universo en expansión. En un artículo de 1922 publica la solución para un universo finito y en 1924 la de un universo infinito.
1929. Edwin Hubble establece una relación lineal entre la distancia y el corrimiento al rojo de las nebulosas espirales que ya había sido observado por el astrónomo Vesto Slipher en 1909. Esta relación se conocerá como Ley de Hubble.
1930. El sacerdote y astrónomo belga Georges Édouard Lemaître esboza su hipótesis del átomo primitivo donde sugería que el universo había nacido de un solo cuanto de energía.
1931. El colaborador de Hubble Milton Humason dio la interpretación de los corrimientos al rojo como efecto Doppler debido a la velocidad de alejamiento de las nebulosas espirales.
1933. El astrónomo suizo Fritz Zwicky publicó un estudio de la distribución de las galaxias sugiriendo que las galaxias estaban permanente ligadas por su mutua atracción gravitacional. Zwicky señaló sin embargo que no bastaba la cantidad de masa realmente observada en la forma de las galaxias para dar cuenta de la intensidad requerida del campo gravitatorio. Se introducía así el problema de la materia oscura
1948. Herman Bondi, Thomas Gold y Fred Hoyle proponen el Modelo de Estado Estacionario donde el universo no sólo tiene las misma apariencia a gran escala visto desde cualquier lugar, sino que la tiene vista en cualquier época.
1948. George Gamow y Ralph A. Alpher publican un artículo donde estudian las síntesis de los elementos químicos ligeros en el reactor nuclear que fue el universo primitivo, conocida como nucleosíntesis primordial. En el mismo año, el mismo Alpher y Robert Herman mejoran los cálculos y hacen la primera predicción de la existencia de la Radiación de fondo de microondas.
1965. Arno Penzias y Bob Wilson de los laboratorios Bell Telephone descubren la señal de radio que fue rápidamente interpretada por el grupo de teóricos de Princeton liderados por Robert Dicke como la Radiación de fondo de microondas. Esta observación descartó Modelo de Estado Estacionario y afianzó el modelo del Big Bang
1981. Alan Guth propone el escenario de universo con una tasa tremenda de expansión en sus primeros instantes conocido como inflación cósmica.
1990. Los resultados preliminares del satélite COBE muestra que el espectro de la Radiación de fondo de microondas es el de un cuerpo negro a 2,7 kelvin con una precisión de una parte en cien mil.
1998. Un grupo de astrónomos liderado por Adam Riess y Saul Perlmutter descubren la Aceleración de la expansión del universo mediante el estudio de supernovas de tipo Ia, lo que constituye la primera evidencia observacional de la existencia de una constante cosmológica o de un campo escalar más general conocido como energía oscura.
2003. La sonda WMAP --sucesora de COBE-- obtiene un espectro de la Radiación de fondo de microondas más preciso, que confirma las observaciones que se habían realizado hasta la fecha por numerosos experimentos que favorecen con gran precisión un universo de materia oscura fría dominado por una constante cosmológica y con una edad de 13700 millones de años, con una precisión de 200 millones de años arriba o abajo.
2013. La misión Planck obtiene los resultados más precisos hasta la fecha, con una estimación de un 68,3% de energía oscura, un 26,8% de materia oscura y un 4,9% de materia ordinaria, y una edad del universo de unos 13810 millones de años, con una precisión de 50 millones de años arriba o abajo.

Áreas de estudio

Debajo se describen algunas de las áreas más activas de investigación en cosmología, en orden cronológico. Estas no incluyen todo sobre la cosmología del Big Bang, que se presenta en la cronología del Big Bang

Nucleosíntesis del Big Bang

La Nucleosíntesis del Big Bang es la teoría de la formación de los elementos en el Universo primigenio. Acaba cuando el Universo tiene tres minutos de edad y su temperatura cae lo suficiente como para que cese la fusión nuclear. Este tiempo en el que ocurrió la nucleosíntesis del big bang fue tan corto, que sólo se produjeron los elementos más ligeros, a diferencia de la nucleosíntesis estelar. Empezando desde los iones de hidrógeno (protones), se produjo principalmente deuterio, helio y litio. Los otros elementos se produjeron en sólo pequeñas cantidades. Mientras que la teoría básica de la nucleosíntesis ha sido aceptada durante décadas (fue desarrollada por George Gamow, Ralph Asher Alpher y Robert Herman). es una prueba física extremadamente delicada del big bang en la actualidad, ya que la teoría de la nucleosíntesis conecta la abundancia de los elementos ligeros primordiales con las características del Universo primigenio. Específicamente, se puede utilizar para comprobar el principio de equivalencia, la materia oscura y la física del neutrino. Algunos cosmólogos han propuesto que la nucleosíntesis del big bang sugiere la existencia de cuatro especies "estériles" de neutrino.

Radiación de fondo de microondas

El fondo cósmico de microondas es la radiación sobrante del desacople, cuando los átomos se formaron por primera vez, y la radiación producida en el Big Bang parada por la difusión de Thomson de iones cargados. La radiación observada por primera vez en 1965 por Arno Penzias y Robert Woodrow Wilson, tenía un espectro de cuerpo negro térmico perfecto. Tiene una temperatura de 2.7 kelvins y es anisótropo en una parte de 105. La Teoría perturbacional cosmológica, que describe la evolución de ligeras inhomogeneidades en el universo primigenio, ha permitido a los cosmólogos calcular de manera precisa la densidad espectral angular de la radiación y ha sido medida por los recientes satélites de experimentación (COBE y WMAP) y muchos asuntos y experimentos basados en globos (como el DASI, el CBI y el Experimento BOOMERanG). Uno de los objetivos de estos esfuezos es medir los parámetros del Modelo Lambda-CDM con un incremento de precisión, así como comprobar las predicciones del modelo del Big Bang y las búsquedas de los nuevos físicos. Las recientes medidas hechas por WMAP, por ejemplo, han acotado la masa del neutrino.

Los nuevos experimentos, como los del Telescopio Cosmológico de Atacama están intentando medir la polarización del fondo cósmico de microondas, que proporcionará más confirmaciones de la teoría así como información sobre la inflación cósmica y las conocidas como anisotropías secundarias, como el efecto Siunyáiev-Zeldóvich y el efecto Sachs-Wolfe, que son causados por la interacción entre galaxias y agrupaciones galácticas con el fondo cósmico de microondas.

Formación y evolución de estructuras a gran escala

Comprendiendo la formación y evolución de las estructuras más grandes y primigenias (p.ej. cuásares, galaxias, agrupaciones galácticas y supercúmulos) es uno de los mayores esfuerzos en cosmología. Los cosmólogos estudian un modelo de formación jerárquica estructural en el que las estructuras se forman desde el fondo, con pequeños objetos primero, después con grandes objetos, como los supercúmulos se siguen formando. El camino más sencillo para estudiar la estructura del Universo es observar las galaxias visibles, para constuir un dibujo tri-dimensional de las galaxias en el Universo y medir la densidad espectral de materia. Esta es la aproximación del Sloan Digital Sky Survey y del 2dF Galaxy Redshift Survey.

Una herramienta importante para comprenden la formación estructural son las simulaciones, que los cosmólogos utilizan para estudiar las sumas gravitacionales de materia en el Universo, como se agrupan en filamentos, supercúmulos y vacíos. Muchas simulaciones contienen sólo materia oscura fría no bariónica, que debería ser suficiente para comprender el Universo en las escalas más grandes, ya que hay mucha más materia oscura en el Universo que materia visible bariónica. Muchas simulaciones avanzadas están empezando a incluir bariones y estudiar la formación de galaxias individuales. Los cosmólogos estudian estas simulaciones para ver si concuerdan con sus investigaciones y comprenden cualquier discrepancia.

Otras técnicas complementarias permitirán a los cosmólogos medir la distribución de materia en el Universo distante y probar la reionización. Estas técnicas son:

El bosque Lyman-alfa, que permite a los cosmólogos medir la distribución de un átomo de gas hidrógeno neutro en el universo primigenio, midiendo la absorción de luz desde cuásares distantes debido al gas.
La línea de adsorción de 21 centímetros de átomos de hidrógenos neutros también proporciona una prueba sensible en cosmología.
Lentes débiles, la distorsión de una imagen distante por lentes gravitacionales debido a la materia oscura.
Esto ayudará a los cosmólogos a decidir la pregunta de cuando se formó el primer cuásar.

Materia oscura

Las pruebas de la nucleosíntesis Big Bang, la radiación de fondo de microondas y las formaciones estructurales sugieren que el 23 % de la masa del Universo consiste en materia oscura no bariónica, donde sólo el 4 % es materia bariónica visible. Los efectos gravitacionales de la materia oscura están bien comprendidos, ya que se comporta como el polvo frío no radiativo que se forma alrededor de halos alrededor de galaxias. La materia oscura nunca ha sido detectada en laboratorio: la naturaleza de la física de partículas de la materia oscura es completamente desconocida. Sin embargo, hay varios candidatos, como una partícula supersimétrica, una WIMP, un axión, un MACHO o incluso una modificación de la gravedad con pequeñas aceleraciones (MOND) o un efecto de la cosmología de branas.

La física en el centro de las galaxias puede dar algunas pistas sobre la naturaleza de la materia oscura.

Energía oscura

Si el Universo fuera plano, tendría que haber un componente adicional formando el 73% (además del 23% de materia oscura y el 4% de bariónica) de la densidad del universo. Este componente es llamado energía oscura. Para no interferir con la nucleosíntesis del Big Bang y la radiación de fondo de microondas, no puede agruparse en halos como los bariones y la materia oscura. Hay fuertes pruebas observacionales para la energía oscura, como la masa total del Universo es conocida y se mide que es plano, pero la suma de materia agrupada es medida ajustadamente y es mucho menor que esta. El caso de la energía oscura fue reforzado en 1999, cuando las medidas demostraron que la expansión del Universo estaba acelerando, más rápido que durante la inflación cósmica.

Sin embargo, aparte de su densidad y sus propiedades de agrupación, nada se conoce sobre la energía oscura. La teoría cuántica de campos predice una constante cosmológica junto con la energía oscura, pero 120 órdenes de magnitud más grande. Steven Weinberg y varios teóricos de cuerdas han usado esta prueba para el principio antrópico, que sugiere que la constante cosmológica es tan pequeña porque la vida (y de esta manera los físicas que hacen observaciones) no pueden existir en un Universo con una gran constante cosmológica, pero mucha gente encuentra que esta es una explicación insatisfactoria. Otras posibles explicaciones para la energía oscura son la quintaesencia o una modificación de la gravedad en escalas grandes. El efecto en cosmología de la energía oscura que estos modelos describen es dada por la ecuación de estado de la energía oscura, que varía dependiendo de la teoría.La naturaleza de la energía oscura es uno de los problemas más desafiantes en cosmología.

Una mejor comprensión de la energía oscura es como resolver el problema del destino último del Universo. En la época cosmológica actual, la expansión acelerada debida a la energía oscura previene la formación de estructuras más grandes que los supercúmulos. No es conocido si la aceleración continuará indefinidamente, tal vez incluso incrementándose y causando un Big Rip o si eventualmente se revertirá.

Otras áreas de investigación

Los cosmólogos también estudian:

Si los agujeros negros primordiales se formaron en nuestro Universo y qué les ocurre.
El límite GZK para rayos cósmicos de alta energía y si señala un fallo de relatividad especial de alta energía.
El principio de equivalencia y si la Teoría general de la relatividad de Einstein es la teoría correcta para la gravedad y si las leyes de la física fundamentales son las mismas en cualquier parte del Universo.

Cosmología física alternativa

Se entiende por cosmología alternativa todas aquellas teorías, modelos o ideas cosmológicas que contradicen el modelo estándar de cosmología:

Ambiplasma, una cosmología de plasma
Expansión cósmica en escala de C. Johan Masreliez
Luz cansada
MOND de Mordehai Milgrom
Cosmología de branas
Modelo de Randall-Sundrum
Modelo cíclico

Nucleosíntesis Primordial




En cosmología física, la nucleosíntesis primordial (nucleosíntesis del Big Bang o nucleosíntesis cosmológica) se refiere al periodo durante el cual se formaron determinados elementos ligeros: el usual 1H (el hidrógeno ligero), su isótopo el deuterio (²H o D), los isótopos del helio ³He y 4He y los isótopos del litio 7Li y 6Li y algunos isótopos inestables o radiactivos como el tritio ³H, y los isótopos del berilio, 7Be y 8Be, en cantidades despreciables.

Características de la nucleosíntesis del Big Bang

Hay dos características importantes de la nucleosíntesis del Big Bang:

duró sólo unos tres minutos (durante el periodo entre 100 y 300 segundos del inicio de la expansión del espacio), después de lo cual la temperatura y la densidad del Universo cayeron por debajo de lo que se requería para la fusión nuclear.[cita requerida] La brevedad de la nucleosíntesis es importante porque evita la formación de elementos más pesados que el berilio mientras que al mismo tiempo se permite la existencia de elementos luminosos incombustibles, como el deuterio;se extendió, rodeando el Universo observable.

El modelo estándar del Big Bang asume la existencia de tres familias de neutrinos (asociadas al electrón, el muon y el tau), así como un valor concreto de la vida media del neutrón (una estimación reciente la sitúa en τ = 886,7 ± 1,9 s). En este contexto, la Nucleosíntesis dará resultados en masas abundantes de aproximadamente un 75% de H-1, un 25% de He-4 y un 0.01% de Deuterio y un poco (en el orden de 10-10) de Litio y Berilo y nada de otros elementos. Que las abundancias observadas en el Universo son consistentes con estos números se considera una fuerte prueba de la teoría del Big Bang.

En este campo es habitual hablar de porcentajes por masa, de tal manera que el 25% de He-4 significa que el 25% de la masa forma He-4. Si se recalcula el número átomo por átomo o mol por mol, el porcentaje de He-4 sería menor.

Secuencia de la nucleosíntesis

La nucleosíntesis del Big Bang empieza sobre un minuto después del Big Bang, cuando el Universo se ha enfriado lo suficiente como para formar protones y neutrones estables después de la bariogénesis. Las abundancias relativas de estas partículas siguen los argumentos termodinámicos sencillos, combinados con el hecho de que la temperatura media del Universo cambia a través del tiempo (si las reacciones necesarias para alcanzar el termodinámicamente favorecido equilibrio, los valores son demasiado pequeños comparados con los cambios de temperatura provocados por la expansión, las abundancias permanecerían en algún valor específico sin equilibrio). Combinando la termodinámica y los cambios traídos en la expansión cósmica, se puede calcular la fracción de protones y neutrones basada en la temperatura en este punto. Esta fracción favorece a los protones, porque las grandes masas de neutrones resultan de la conversión de neutrones a protones con una vida media de unos 15 minutos. Una característica de la Nucleosíntesis es que las leyes y las constantes físicas que gobiernan el comportamiento de la materia a estos niveles de energía están muy bien comprendidos e incluso la Nucleosíntesis carece de las incertidumbres especulativas que caracterizan los primeros periodos en la vida del Universo. Otra característica es que el proceso de nucleosíntesis está determinado por las condiciones en las que empezó esta fase de la vida del Universo, haciendo que lo que ocurriera antes fuera irrelevante.

Según se expande el Universo, se enfría. Los neutrones libres y los protones son menos estables que los núcleos de Helio y los protones y neutrones tienen una fuerte tendencia a formar He-4. Sin embargo, el He-4 antiguo necesita el paso intermedio de formar el deuterio. En ese momento en que ocurre la nucleosíntesis, la temperatura es suficientemente alta para la energía media por partícula para ser mayor que la energía de enlace del deuterio. Además, cualquier deuterio que se formara se destruiría inmediatamente (una situación conocida como el cuello de botella del deuterio). Así, la formación de He-4 se retrasa hasta que el Universo se vuelva lo suficientemente frío como para formar deuterio (aproximadamente T = 0.1 MeV), cuando hay una ráfaga repentina de formación de elementos. Poco después, tres minutos después del Big Bang, el Universo está demasiado frío para que ocurra cualquier fusión nuclear. En este punto, las abundancias elementales son fijadas y sólo cambian como productos de la radioactividad de la descomposición de la Nucleosíntesis (como el tritio).

En estos momentos (era leptónica), el Universo era una mezcla de diferentes partículas, donde la proporción aproximada entre bariones y fotones era η = 10-10. En esta fase, el ritmo de expansión del Universo era mayor que las escalas de tiempo de las diversas interacciones (electromagnética, fuerte o débil) y por tanto las reacciones nucleares se llevaban a cabo tanto en un sentido como en otro, y se mantenía por tanto el equilibrio entre especies. Cuando el ritmo de expansión es inferior a alguna interacción se produce el desacoplamiento. A los 0,1 segundos el Universo se había enfriado hasta una temperatura de 3·1010 K (unos 4 MeV). El tiempo característico de las interacciones débiles es proporcional a T5, y por tanto menos sensible a los cambios de temperatura: los neutrinos dejaron de estar en equilibrio y se desacoplaron, comenzando a expandirse adiabáticamente a una temperatura inversamente proporcional al tamaño del Universo. Otras formas de interacción débil, como neutrón + positrón <--> protón + antineutrino aún eran suficientemente rápidas como para mantener un equilibrio entre neutrones y protones. Otros autores han sugerido escenarios alternativos.

La existencia de inhomogeneidades habría tenido una enorme repercusión en la nucleosíntesis primordial. Un segundo después del Big Bang (T = 1010 K, 1 MeV), las reacciones que mantenían el equilibrio entre neutrones y protones se volvieron más lentas que la expansión. La proporción n/p se congeló en torno a 0,18. De esta manera, el mayor contenido de protones daría como resultado la abundancia de hidrógeno y helio. A los 10 segundos, con T = 3·109 K, 0,5 MeV, los fotones dejaron de ser lo suficientemente energéticos para crear pares electrón-positrón. Se produjo una aniquilación de pares que dio lugar a una proporción de un electrón por cada 109 fotones. Éste fue el fin de la era leptónica, dando lugar a la era de la radiación, que duró hasta unos 372.000 años de media tras el Big Bang, comenzando hacia 257.000 años hasta pasados los 487.000, momento en el que la materia y la energía se desacoplaron completamente, a una temperatura de unos 3000 K, y produjeron la radiación de fondo, que actualmente, debido al desplazamiento al rojo, tiene una temperatura de antena de unos 2,7 K.

Durante la era de la radiación no se pudo producir deuterio u otros núcleos más pesados, hasta que la temperatura descendió a 9·108 K (0,1 MeV), unos 200 segundos después del Big Bang. En este momento la síntesis del deuterio se produjo en cantidades apreciables y comenzó la nucleosíntesis primordial. El deuterio se combinó con los protones, dando lugar al 3He. Poco después la mayor parte de neutrones se integraron dando lugar al 4He. Con una proporción n/p = 0,15, ligeramente tras la 'congelación', la proporción entre el hidrógeno y el 4He es de 3 a 1. Tal y como anticiparon Enrico Fermi y sus colaboradores, como hay núcleos atómicos estables de masa atómica 5 y 8, la actividad nuclear se detuvo en el 4He, debido a que la combinación de las dos especies más abundantes, hidrógeno y 4He producen un núcleo inestable de masa atómica 5.

La síntesis finalizó 1000 segundos después del Big Bang, a una temperatura de 3·108 K. Posteriormente, la desintegración del tritio en 3He, mientras los núcleos atómicos de masa 7 acabaron transformados en 7Li, produjeron un Universo compuesto mayoritariamente por hidrógeno y 4He, con trazas de deuterio, 3He y 7Li. El resto de elementos de la tabla periódica se sintetizaron posteriormente mediante procesos de nucleosíntesis estelar, auténticos hornos nucleares.

Historia de la nucleosíntesis primordial

Los primeros estudios de nucleosíntesis primordial se iniciaron con los trabajos de George Gamow, Ralph Alpher y Robert Hermann en los años 1940. Junto con Hans Bethe publicaron el seminario Alpher-Bethe-Gamow perfilando la teoría de producción de los elementos ligeros en el Universo promigenio. Éstos consideraban al Universo primigenio como un horno nuclear en el cual podía cocinarse la totalidad de la tabla periódica de los elementos, especulación incorrecta pero que les llevó a predecir el fondo cósmico de microondas. Éstos cálculos partían de dos hipótesis:

El Universo, homogéneo e isótropo, puede describirse mediante la teoría de la relatividad general.
La temperatura del Universo en sus fases iniciales era lo suficientemente elevada como para presentar un estado de equilibrio estadístico nuclear entre las distintas especies. Después de 10-4 segundos la temperatura era de 1012 K, unos 100 MeV.
Durante los años 1970, había un gran misterio debido a que la densidad de bariones calculada en la Nucleosíntesis primordial era mucho menos que la masa observada del Universo basada en los cálculos de la tasa de expansión. Este misterio fue resuelto en gran parte postulando la existencia de la materia oscura.

Elementos pesados

La Nucleosíntesis del Big Bang no produjo elementos más pesados que el berilio, gracias al cuello de botella debido a la ausencia de núcleos estables con más de 8 nucleones. En las estrellas, el cuello de botella se pasa por colisiones triples de núcleos de He-4, produciendo carbono (el proceso triple-alfa). Sin embargo, este proceso es muy lento, necesitando decenas de miles de años para convertir una suma significante de Helio en carbono en las estrellas y además su contribución es insignificante en los minutos que siguen al Big Bang.

Helio-4

La nucleosintesis del Big Bang predice una abundancia primordial sobre 25% Helio-4 y este número es extremadamente insensible a las condiciones iniciales del Universo. La razón para ello es que el He-4 es muy estable y casi todos sus neutrones se combinarán con protones para formar el He-4. Además, dos átomos de He-4 no se pueden combinar para formar un átomo estable, de tal manera que cuando se forma He-4, sigue siendo He-4. Una analogía es pensar en el He-4 como ceniza y la suma de ceniza que se forma cuando una pieza de madera arde completamente es insensible a cómo arde.

La abundancia de He-4 es importante porque hay más He-4 en el Universo que del que puede explicarse en la nucleosíntesis estelar. Además, proporciona una prueba importante para la teoría del Big Bang. Si la abundancia de Helio observada es muy diferente del 25%, entonces esto sopondria un serio problema para la teoría. Esto particularmente sería el caso si la abundancia primigenia de He-4 era mucho menor del 25% porque el He-4 es difícil de destruir. Durante unos cuantos años a mediados de los años 1990, las observaciones sugerían que este podría ser el caso, causando que los astrofísicos hablaran sobre una crisis del Big Bang nucleosintético, pero las observaciones posteriores fueron consistentes con la teoría del Big Bang.

Deuterio

El deuterio es en algunos casos el opuesto al He-4 (que es muy estable y muy difícil de destruir), el deuterio es sólo marginalmente estable y fácil de destruir. Como el He-4 es muy estable, hay una fuerte tendencia de que dos núcleos de deuterio se combinen para formar He-4. La única razón de que la Nucleosíntesis no convierta todo el deuterio del Universo en He-4 es que la expansión del Universo lo enfrió y cortó esta conversión poco antes de completarse. Una consecuencia de esto es que al contrario que con el He-4, la cantidad de deuterio es muy sensible a las condiciones iniciales. Cuanto más grande es el universo, más deuterio se convierta en He-4 y queda menos deuterio.

No hay procesos post-Big Bang que produzcan significantes sumas de deuterio. Además, las observaciones sobre la abundancia de deuterio sugieren que el Universo no tiene edad infinita, de acuerdo con la teoría del Big Bang. Durante los años 1970, hubo grandes esfuerzos en encontrar procesos que pudieran producir deuterio, pero resultaron ser un camino de producir otros isótopos distintos del deuterio. El problema fue que mientras la concentración de deuterio en el Universo es consistente con el modelo del Big Bang en conjunto, es altamente consistente con un modelo que presume que el Universo consiste en protones y neutrones. Si se asume que todo el Universo consiste en protones y neutromes, la densidad del Universo es tal que gran parte del deuterio observado se habría quemado dando He-4.

Esta inconsistencia entra las observaciones de deuterio y las observaciones de la tasa de expansión del Universo condujeron a un gran esfuerzo para encontrar procesos que pudieran producir deuterio. Después de una década de esfuerzos, el consenso fue que estos procesos son improbables y la explicación estándar utilizazda actualmente para la abundancia de deuterio es que el Universo no consiste principalmente de bariones y que la materia no bariónica (materia oscura) camufla gran parte de la materia del Universo. Esta explicación es también consistente con los cálculos que demuestran que un Universo está constituido principalmente de protones y neutrones estaría más agrupado de lo que se observa.

Es difícil que surjan procesos que produzcan deuterio mediante fusión nuclear. Lo que este proceso necesitaría es que la temperatura fuera lo suficientemente caliente como para producir deuterio, pero no lo suficiente como para procudir He-4 y que este proceso inmediatamente se enfirara a temperaturas no nucleares después de no más de unos cuantos minutos. También, es necesario para que el deuterio se barra antes de que vuelva a ocurrir.

También es difícil producir deuterio por fisión. El problema aquí de nuevo es que el deuterio está muy sujeto a procesos nucleares y esas colisiones entre núcleos atómicos probablemente den como resultado de la absorción nuclear o del lanzamiento de neutrones libres o partículas alfa. Durante los años 1970, se hicieron intentos de utilizar espalación de rayos cósmicos para producir deuterio. Estos intentos de producir deuterio fallaron, pero inesperadamente produjeron otros elementos ligeros.

Pruebas observacionales y estado de la nucleosíntesis

La teoría de la nucleosíntesis proporciona una descripción matemática detallada de la producción de "elementos" ligeros: deuterio, He-3, He-4 y Li-7. Específicamente, la teoría proporciona predicciones cuantitativas precisas de la mezcla de estos elementos, que son, las abundancias primigenias.

Para probar estas predicciones, es necesario reconstruir las abundancias primigenias como sea posible, por ejemplo observando objetos astronómicos en que la muy pequeña nucleosíntesis estelar ha tomado lugar (como ciertas galaxias enanas) u observando objetos que están muy lejos y así se pueden ver en una etapa muy temprana de su evolución (como quasares distantes).

Como aparece arriba, en el dibujo estándar de la nucleosíntesis, todas estas abundancias elementales dependen de la suma de materia bariónica ordinaria relativa a la tadiación (fotones). Como el Universo es homogéneo, tiene un único valor de la relación barión-protón. Durante un largo tiempo, esto significó que para probar la teoría de la Nucleosíntesis del Big Bang contra las observaciones uno se tenía que preguntar: ¿pueden todas las observaciones de elementos ligeros ser explicadas con un valor sencillo de relación barión-protón? O más precisamente, permitiendo la precisión finita de las predicciones y las observaciones, la pregunta es: ¿hay algún rango de valores de la relación barión-protón que pueda estar de acuerdo con todas las observaciones?

Más recientemente, la pregunta ha cambiado: las observaciones de precisón de la radiación de fondo de microondas con el WMAP dan un valor independiente para la relación barión-protón. Utilizando este valor, ¿están las predicciones de la Nucleosíntesis del Big Bang para las abundancias de los elementos ligeros de acuerco con las observaciones?

La respuesta actual es un si: para el He-4, hay un buen acuerdo y para el He-3 y el deuterio (donde la exactitud de las medidas de abundancia es mayor), el acuerdo es incluso mayor. Para el Li-7, las observazciones y las predicciones dan el mismo orden de magnitud, pero son diferentes en un factor de 2. Sin embargo, dadas las presunciones que necesitan hacerse para reconstruir la abundancia primigenia de Li-7, es más probable reflejar incertidumbres en la comprensión de la física estelar que las imperfecciones en nuestra comprensión de la Nucleosíntesis del Big Bang. Este nivel de acuerdo no es trivial y representa un éxito imprevisible de la cosmología moderna: la Nucleosíntesis del Big Bang extrapola los contenidos y las condiciones del Universo actual (de unos 14.000 millones de años) hacia atrás hasta que su edad era de un segundo y los resultados están de acuerdo con la observación.

Modelos no convencionales de la nucleosíntesis del Big Bang

Además del escenario convencional de la nucleosíntesis del Big Bang hay numerosos escenarios no convencionales. Estos no deberían confundirse con la cosmología no convencional: un escenario no convencional de la nucleosíntesis primigenia asume que el Big Bang ocurrió, pero inserta física adicional para ver cómo afecta a las abundancias de los elementos. Estas piezas de fisica adicional son la relajación o la eliminación de la presunción de homogeneidad o insertar nuevas partículas como neutrinos masivos.

Ha habido y continúa habiendo varias razones para investigar en teorías de nucleosíntesis primigenia no convencionales. El primero, que es de gran interés histórico, es resolver inconsistencias entre las predicciones de la nucleosíntesis del Big Bang y las observaciones. Esto se ha probado que es de utilidad limitada, dado que las inconsistencias fueron resueltas por mejores observaciones y en muchos casos intentando cambiar la nucleosíntesis resultáron abundancias que eran más inconsistentes con las observaciones. El segundo, que es principalmente el foco de la nucleosíntesis a principios del siglo XXI, es utilizas la nucleosíntesis para fijar los límites en teorías físicas especulativas o desconocidas. Por ejemplo, la nucleosíntesis primigenia convencional asume que ninguna hipotética partícula exótica involucrada en la nucleosíntesis. Se puede insertar una partícula hipotética (como un neutrino masivo) y ver qué pasa antes de que la nucleosíntesis del Big Bang prediga que son muy diferentes de las observaciones. Esto se ha hecho satisfactoriamente para poner límites a la masa de un neutrino tau.

Movimiento Superlumínico



En astronomía, el movimiento superlumínico es el movimiento aparentemente más rápido que la velocidad de la luz que muestran radiogalaxias, quásares y las fuentes galácticas conocidas como microquasares. Se piensa que todas estas fuentes contienen agujeros negros que son responsables de lanzar masa a gran velocidad. Cuando se observó por primera vez en los años 1970, la velocidad superlumínica se utilizó como evidencia en contra de que los quásares estuvieran a distancias cosmológicas. En la actualidad la mayor parte de los astrofísicos piensan que este movimiento no es más que una ilusión óptica y que no supone ninguna violación de la teoría de la relatividad.

Explicación

El efecto se produce a velocidades cercanas a la de la luz. Imaginemos un cuerpo que sale del centro de una galaxia y se mueve rápidamente casi en la dirección al observador, a sólo unos pocos grados con la línea que le une a la galaxia. Cuando el cuerpo sale de la galaxia, emite un fotón. Al cabo un rato, el cuerpo se ha movido y, si emite un segundo fotón, este fotón necesitará menos tiempo que el primero para llegar a nosotros, porque el cuerpo ya estará más cerca. Si el observador ignora el movimiento hacia la Tierra y sólo toma en consideración el movimiento perpendicular en el plano del cielo, le parecerá que el cuerpo se ha movido a más velocidad de la real. La velocidad aparente puede ser muchas veces superior a la de la luz.

La velocidad superlumínica se puede ver a veces en cuerpos que forman parte de jets que se alejan en dirección contraria, una alejándose y otro acercándose a la Tierra. Si se mide el desplazamiento Doppler de ambos cuerpos, se puede determinar la distancia y la velocidad de los cuerpos.

Termodinámica De Los Agujeros Negros



La termodinámica de los agujeros negros es la rama de la astrofísica desarrollada a partir del descubrimiento de la analogía entre las leyes de la termodinámica y algunas de las propiedades de los agujeros negros. Estos estudios fueron emprendidos en los años 1970 por científicos como Stephen Hawking, quien a su vez planteó el fenómeno de la evaporación de los agujeros negros en 1975 por el cual un agujero negro no es un cuerpo absolutamente oscuro sino que podría emitir una cantidad débil de radiación térmica.

Analogía termodinámica de los agujeros negros

El estudio de los agujeros negros estableció el llamado teorema de ningún pelo que sostiene que es posible describir estos cuerpos celestes mediante únicamente tres parámetros: su masa M, su carga eléctrica Q y su momento cinético L. En ausencia de momento cinético, un agujero negro es perfectamente esférico, pero si posee un momento cinético, adoptará una forma ligeramente achatada. Así, el parámetro que pertinentemente describe la estructura del agujero negro no es su radio, sino su superficie que ha de entenderse como la superficie del horizonte de sucesos que le caracteriza. Existirá por tanto una relación entre el área del agujero negro A a los tres parámetros establecidos por el teorema.

El principio cero de la mecánica es una consecuencia inmediata de las propiedades de la gravedad de superficie que es constante sobre toda la superficie del agujero negro. Esta propiedad puede resultar poco intuitiva ya que para un planeta en rotación, la intensidad del campo gravitacional es inferior en su ecuador que en los polos como consecuencia de la fuerza centrífuga. Como vemos, este efecto no se presenta en los agujeros negros donde más precisamente, la velocidad de divergencia de la intensidad del campo gravitacional al aproximarse a su superficie es constante.

El tercer principio de la mecánica de los agujeros negros estipula que no se puede alcanzar el estado de agujero negro extremo, la frontera entre un agujero negro y la singularidad desnuda. Una conclusión de ello, por ejemplo, es si se aumentara la carga eléctrica de un agujero negro podría contemplarse que desapareciese su horizonte. Sin embargo, la energía a aportar a las partículas cargadas que se deberían lanzar contra el agujero negro de igual carga devendría cada vez más grande a medida que nos aproximamos al estado extremo. Además, surgiría el fenómeno de creación de parejas de partículas-antipartículas que en su vecindad, el agujero negro tendrá tendencia a producir parejas entre las cuales, las que tengan carga opuesta al agujero, serán absorbidas por este, mientras que las opuestas serán repelidas.

James M. Bardeen (hijo del doble Premio Nobel de física John Bardeen), Brandon Carter y Stephen Hawking fueron los investigadores que formalizaron los principios de la termodinámica aplicada a los agujeros negros en 1973,dos años incluso del descubrimiento de la entropía de los agujeros negros por Hawking. Con anterioridad, una fórmula elegante que asociaría el conjunto de las cantidades termodinámicas fue establecida por Larry Smarr.En honor a su descubridor esta fórmula es conocida como fórmula de Smarr.

Interpretación estadística

Una de las cuestiones abiertas en el campo de la termodinámica de los agujeros negros es el de la interpretación de su entropía. Existe la posibilidad que una teoría de gravitación cuántica viable pudiera ofrecer una interpretación de la entropía asociada a los agujeros negros en términos de microestados. Aunque la teoría de las cuerdas permite una interpretación para algunas clases de agujeros negros extremos, para el resto su complejidad no permite ser descritos por esta misma teoría a un nivel cuántico. Igualmente, la gravedad cuántica de bucles propone una interpretación de la entropía pero únicamente para el tipo de agujero negro de Schwarzschild,ya que su razonamiento empleado no parece poder extenderse de manera coherente a otro tipo agujeros negros.

Perspectivas de desarrollo posterior

La aplicación de técnicas de termodinámica de los agujeros negros permite evidenciar todo un conjunto de ricos fenómenos en los agujeros negros. En particular, es posible calcular el calor específico de los agujeros negros.

Espuma Cuántica



La espuma cuántica, también conocida como espuma del espacio-tiempo es un concepto en la mecánica cuántica, concebido por John Wheeler en 1955.

La espuma fue propuesta como el concepto de lo que sería supuestamente la base de la estructura del universo,pero también se utiliza el término como una descripción cualitativa de las turbulencias del espacio-tiempo subatómico, que tienen lugar a distancias extremadamente pequeñas, del orden de la longitud de Planck.

A escalas tan pequeñas como la escala de Planck de tiempo y espacio, el principio de incertidumbre permite que las partículas y la energía existan brevemente, para aniquilarse posteriormente, sin violar las leyes de conservación de masa y energía. Puesto que la escala de Planck de espacio y tiempo son muy pequeñas, la energía de las partículas virtuales se ve incrementada (ya que la escala de energía es inversamente proporcional a la de tiempo). Esto da lugar a grandes energías y presumiblemente a grandes curvaturas del espacio-tiempo, de acuerdo a la teoría de la relatividad general de A. Einstein.

Esta discusión informal, sugiere que a escalas suficientemente pequeñas, la energía de las fluctuaciones sería suficientemente elevada para causar salidas significativas de dicha energía desde el espacio-tiempo liso visto desde una escala mayor, lo que le daría al entramado espaciotemporal un carácter "espumoso". Sin embargo, sin una teoría completa de la gravedad cuántica, es imposible saber cómo se apreciaría el espacio-tiempo a estas escalas, ya que se piensa que las teorías existentes no podrían hacer predicciones muy precisas en este contexto.

Se han propuesto algunos modelos formales de espuma cuántica,pero aún son propuestas esquemáticas que no han permitido construir una teoría bien estructurada que haga predicciones verificables.

Relación con otras teorías

La espuma cuántica es, en teoría, creada por partículas virtuales de muy alta energía. Las partículas virtuales son descritas en la teoría cuántica de campos, como partículas que surgen brevemente para ser rápidamente aniquiladas durante la interacción entre partículas, de tal forma que afectan a las medidas de dicha interacción, a pesar de que las partículas virtuales nunca son directamente observadas. Estas partículas también pueden aparecer y aniquilarse en breves espacios de tiempo en el espacio vacío, y estas fluctuaciones del vacío afectan a las propias propiedades del vacío, dando lugar a una energía no cero conocida como energía del vacío, un tipo de energía del punto cero (sin embargo, los físicos no están seguros de la magnitud de esta energía).El efecto Casimir también puede ser comprendido en términos del comportamiento de partículas virtuales en el espacio vacío entre dos superficies paralelas. De forma ordinaria, la teoría cuántica de campos no trata sobre partículas virtuales con energía suficiente para curvar el espacio-tiempo de forma significativa, por lo que la espuma cuántica es una extensión especulativa de estos conceptos que hipotetizan las consecuencias de dichas partículas virtuales de alta energía a longitudes y períodos de tiempo extremadamente pequeños.

El espacio-tiempo espumoso parecería una compleja y turbulenta tempestad en el mar. Algunos físicos teorizan y especulan sobre la posible formación de agujeros de gusano en dicha espuma, así como la posibilidad de creación de un hiperespacio que conecte con otros universos paralelos.

Tiempo Unidimensional Monodireccional Flecha del tiempo


El concepto de flecha del tiempo se refiere popularmente a la dirección que el mismo registra y que discurre sin interrupción desde el pasado hasta el futuro, pasando por el presente, con la importante característica de su irreversibilidad, es decir, que futuro y pasado, sobre el eje del presente, muestran entre sí una neta asimetría (el pasado, que es inmutable, se distingue claramente del incierto futuro).

La expresión en sí, flecha del tiempo, fue acuñada en el año 1927 por el astrónomo británico Arthur Eddington, quien la usó para distinguir una dirección en el tiempo en un universo relativista de cuatro dimensiones, el cual, de acuerdo con este autor, puede ser determinado por un estudio de los distintos sistemas de átomos, moléculas y cuerpos.

Historia de la expresión

En 1928, Eddington publicó su libro The Nature of the Physical World, que contribuyó a popularizar la flecha del tiempo. En él, el autor escribió:

Dibujemos una flecha del tiempo arbitrariamente. Si al seguir su curso encontramos más y más elementos aleatorios en el estado del universo, en tal caso la flecha está apuntando al futuro; si, por el contrario, el elemento aleatorio disminuye, la flecha apuntará al pasado. He aquí la única distinción admitida por la física. Esto se sigue necesariamente de nuestra argumentación principal: la introducción de aleatoriedad es la única cosa que no puede ser deshecha. Emplearé la expresión “flecha del tiempo” para describir esta propiedad unidireccional del tiempo que no tiene su par en el espacio.

Eddington, por lo tanto, señala tres puntos distintivos de esta flecha:

Es vívidamente reconocida por la conciencia.
Es igualmente exigida por la razón, que nos informa de que una flecha reversible sería un absurdo (como veremos en el ejemplo del vaso).
La flecha del tiempo no viene recogida en la ciencia física, salvo en el estudio de la organización de fenómenos determinados.
Así pues, de acuerdo con Eddington, la flecha del tiempo indica la dirección del incremento progresivo del elemento aleatorio. Siguiendo un antiguo argumento de la termodinámica, Eddington concluye que en lo que respecta a la ciencia física, la flecha del tiempo es una propiedad exclusiva de la entropía.

Explicación

Planos macroscópico y microscópico

A partir del surgimiento de la mecánica cuántica, hace un siglo, se cree que los procesos físicos a nivel microscópico son en su mayor parte temporalmente simétricos, lo que sugiere que las afirmaciones teóricas que los describen serán verdaderas si la dirección del tiempo es reversible. En el plano macroscópico sucede todo lo contrario, ya que existe una dirección clara en la flecha del tiempo, del pasado al futuro (el vaso de cristal que cae de la mesa se rompe contra el suelo, sin volver a recomponerse nunca sobre la mesa). La flecha del tiempo, pues, estaría representada por cualquier cosa que exhibiese dicha asimetría temporal. O, en otras palabras, que en el plano macroscópico, o visible, el tiempo marcha siempre hacia delante, mientras que en el microscópico, o de las partículas elementales, puede hacerlo igualmente hacia atrás.

Simetría y asimetría

La simetría del tiempo puede ser entendida mediante una simple analogía: si el tiempo fuese perfectamente simétrico sería posible ver una película -que hubiese filmado sucesos reales- de manera que todo lo que se visualizase en la misma pareciese realista, ya se pasase la película hacia delante o hacia atrás.

La existencia de una flecha del tiempo determinada se observaría fácilmente al ver el vaso de cristal recomponiéndose sobre la mesa después de roto y juzgar que no sería una escena realista. Sin embargo una filmación de los planetas del sistema solar orbitando alrededor del sol hacia atrás podría resultar tan realista como hacia delante, porque en ambos casos semejarían obedecer las leyes físicas.

Ejemplo de irreversibilidad

Ha de considerarse una situación en la que un gran contenedor es rellenado con dos líquidos separados, por ejemplo, un tinte coloreado en un lado y agua en el otro. Sin ninguna barrera entre ambos líquidos, el empuje mutuo entre sus moléculas resultaría en una mezcla mayor a medida que pasase el tiempo. Del mismo modo, una vez mezclados el tinte y el agua, uno no esperaría nunca que volviesen a separarse por sí mismos. Una película del proceso de mezcla sería realista si, y sólo si, se proyectase hacia delante, pero nunca si se proyectase hacia atrás.

Si el contenedor es observado al principio del proceso de mezcla, se verían los líquidos sólo parcialmente mezclados. Sería razonable concluir que, sin necesidad de una comprobación externa, el líquido alcanzaría este estado debido a que estaría más ordenado en el pasado, cuando había más separación de moléculas, y estaría más desordenado o mezclado, en el futuro.

Ahora imaginemos que el experimento se repite, esta vez usando sólo unas pocas moléculas, por ejemplo, diez moléculas, en un contenedor muy pequeño. Al chocar entre sí, podría ocurrir que las moléculas, por mera casualidad, se segregasen limpiamente unas de otras, con las de tinte de un lado y las de agua del otro, lo que puede esperarse que suceda de vez en cuando, obedeciendo a la teoría de la fluctuación cuántica, que prevé la posibilidad, ya sea pequeña, de que las moléculas se separen en algún momento de esa forma por sí mismas. Sin embargo, considerando un número mucho más elevado de moléculas, es tan improbable esta segregación que, para que ocurra, de media, podría esperarse que pasase más tiempo del transcurrido desde el origen del universo.

Así pues, una película que mostrase un gran número de moléculas separándose por sí mismas, como se ha descrito anteriormente, podría parecernos no realista y uno se inclinaría a afirmar que la película había sido proyectada al revés.

Tipos

Flecha del tiempo termodinámica

Este concepto viene previsto en la Segunda Ley de la Termodinámica, que sostiene que en el seno de un sistema aislado, la entropía sólo puede incrementarse con el tiempo, y nunca disminuir. La entropía puede ser concebida como la tendencia al desorden de todo sistema organizado, o como una medida de ese desorden, y de esta manera la Segunda Ley implica que el tiempo es asimétrico con respecto a la cantidad de orden en un sistema aislado: a medida que el tiempo pasa, todo sistema se vuelve más desordenado.

La consecuencia inmediata es que esta asimetría puede servir empíricamente para distinguir entre pasado y futuro.

La termodinámica no es aplicable estrictamente a todos los fenómenos, dado que ciertos sistemas pueden fluctuar a estados de menor entropía, de acuerdo con la conjetura de Poincaré. Sin embargo, sirve para describir la tendencia general existente en la naturaleza a una mayor entropía.

La flecha del tiempo de la termodinámica parece estar relacionada con las siguientes flechas del tiempo, y presumiblemente subyace a todas ellas, con excepción de la flecha del tiempo débil.

Flecha del tiempo cosmológica

La flecha del tiempo cosmológica define la dirección de un universo en expansión, o inflacionario. Esto puede ser relacionado con la flecha de la termodinámica, la cual, debido a la antes descrita entropía, prevé un universo encaminado a una muerte térmica (en inglés, Big Chill) en que la cantidad de energía aprovechable se vuelve insignificante.

El físico británico Stephen Hawking se plantea, en este sentido, qué ocurriría si el universo dejase de expandirse y empezase a contraerse por haber superado el límite gravitacional crítico, con una flecha del tiempo invertida, en la cual la gravedad tendiese a colapsarlo todo en un Big Crunch (en castellano gran implosión o gran crujido, contraria al Big Bang). Concluye que la flecha termodinámica no se invertiría y no se iniciaría la disminución del desorden. "La gente no viviría sus vidas hacia atrás, hacia el nacimiento."

Asimismo, sigue Hawking, con arreglo al principio antrópico, actualmente sólo podemos estar viviendo en la fase expansiva (y de evolución biológica) del universo, ya que seres inteligentes sólo pueden existir en dicha fase debido a que la fase contractiva sería inadecuada para ello, al no poseer una flecha termodinámica y psicológica clara del tiempo (a consecuencia del gran enfriamiento y del bajo nivel de entropía a que se habría llegado).

Si la flecha del tiempo cosmológica está relacionada con las otras flechas, en tal caso el futuro es, por definición, la dirección en la que el universo va creciendo. Así, el universo se expande más que contraerse, por definición.

Para el físico Roger Penrose la esperada unificación de las físicas relativista y cuántica (en concreto la teoría cuántica de la gravedad) permitirá por fin la comprensión profunda de la flecha del tiempo.

Flecha del tiempo de la radiación

Toda onda física, desde las ondas de radio hasta las ondas sonoras, o las que surgen alrededor de una piedra arrojada al agua, se expanden hacia afuera desde su fuente, aunque las ecuaciones de onda contemplan la existencia tanto de ondas convergentes como de ondas radiantes. Esta flecha ha sido invertida en experimentos cuidadosamente diseñados que han originado ondas convergentes. La posibilidad de crear condiciones iniciales para producir ondas convergentes es mucho más baja que la probabilidad de las condiciones que producen ondas radiantes. Normalmente, pues, la onda radiante incrementa la entropía, mientras que la onda convergente la reduce, oponiéndose por tanto esta última, en circunstancias corrientes, a la Segunda Ley de la Termodinámica.

Flecha del tiempo causal

Las causas normalmente anteceden a los efectos. El futuro puede ser controlado, no así el pasado. Pero el problema de usar la causalidad como una flecha del tiempo, es que, como señaló el filósofo David Hume, la relación causal no puede ser percibida por sí misma, ya que el observador sólo es capaz de percibir “el encadenamiento”, la sucesión de los sucesos, de la causa y el efecto, pero no un vínculo, por así decir, material o de alguna manera registrable.

Por otra parte, es sumamente difícil aportar una explicación clara del significado real de los términos causa y efecto. Está claro que dejar caer el vaso de cristal es la causa y su rotura el efecto, sin embargo, pudiera ser que la asimetría que el observador percibe en tal caso no es la propia de la flecha del tiempo causal realmente, sino de la termodinámica. Si la flecha termodinámica fuese invertida, entonces uno podría pensar que los trozos de vidrio eran la causa y el vaso recomponiéndose sobre la mesa el efecto. 

Flecha del tiempo débil

Ciertas interacciones en el plano subatómico implican que la fuerza nuclear débil viola la conservación de la paridad, pero sólo muy raramente. De acuerdo con el teorema de la simetría CPT (simetría fundamental de las leyes físicas en el entorno de transformaciones que involucran las inversiones de la carga, paridad y tiempo simultáneamente), esto significa que el tiempo podría ser reversible, y por tanto establece una flecha del tiempo. Estos procesos podrían ser responsables de la creación de materia en el universo primitivo.

Esta flecha no está relacionada con ninguna otra por ningún mecanismo conocido, lo que podría sugerir que nuestro universo podría estar hecho de antimateria en lugar de materia. Más probablemente, las definiciones de materia y antimateria pueden ser invertidas.

Esta paridad rota muy raramente significa que la flecha sólo por muy poco apunta en una dirección, colocándose aparte de otras flechas cuyas direcciones son mucho más claras.

Flecha del tiempo cuántica

De acuerdo con la interpretación de Copenhague de la mecánica cuántica, la evolución cuántica se halla gobernada por la ecuación de Schrödinger, que es temporalmente simétrica, y por el colapso de la función de onda, que es irreversible en el tiempo. Dado que el mecanismo del colapso de función de onda es todavía oscuro, no se conoce cómo esta flecha se vincula con las otras. Mientras que en el nivel microscópico el colapso parece no mostrar tendencia a incrementar o disminuir la entropía, algunos científicos opinan que existe un prejuicio que pone al descubierto a escala macroscópica la flecha termodinámica. De acuerdo con la teoría de la decoherencia cuántica, y asumiendo que el colapso de la función de onda es sólo aparente, esta flecha del tiempo es una consecuencia de la flecha del tiempo termodinámica.

Flecha del tiempo psicológica

El tiempo psicológico es, en parte, el catálogo de la acumulación creciente de datos en la memoria a partir de continuas fluctuaciones en la percepción. En otras palabras, lo que recordamos configura el pasado, mientras que el futuro consiste en esos sucesos que no pueden ser recordados. El viejo método de comparar sucesos únicos para comprender y generalizar sucesos repetidos, como el movimiento aparente del sol, la luna y las estrellas, trasladado a todos los cuerpos celestes, es un buen modelo de ello. La acumulación de recuerdos en la memoria crea una flecha del tiempo mental.

Otra flecha se origina por la sensación de que nuestra percepción es un continuo movimiento e intercambio entre lo desconocido (el futuro) y lo conocido (el pasado). La anticipación de lo desconocido conforma el futuro psicológico que siempre parece ser algo que avanza hacia delante, pero, como el reflejo en el espejo, configura lo que se haya archivado ya en la memoria, como los deseos, los sueños y las esperanzas, que, en efecto, parecen hallarse siempre para la persona más allá en el tiempo.

La asociación mental entre el pasado (detrás) y el futuro (delante) puede hallarse culturalmente condicionada, como demuestra una investigación efectuada en 2006 con los indios Aimara, los cuales, contrariamente a los demás pueblos, perciben el futuro por detrás y el pasado por venir.

La flecha del tiempo psicológica es reductible a la termodinámica si vemos la memoria como la correlación entre las neuronas (o los bits informáticos) y el mundo exterior. El volumen de memoria aumenta en esa correlación, pero siempre en el sentido del futuro, nunca del pasado.

El paso del tiempo se aprecia también con claridad en el terreno de la volición y la acción, que tienden siempre a afectar positivamente para nosotros la configuración del futuro. Y, desde luego, nadie trataría nunca de afectar el curso del pasado.

El proceso de envejecimiento supone, por desgracia, algo más que la simple acumulación de recuerdos, de ahí que el ser humano siempre haya tenido más ilusión en volver atrás en el tiempo que en viajar al futuro o en invertir la flecha del tiempo.

Según el físico y estudioso de este problema Paul Davies, «pudiera ser que algún trabajo futuro localizara los procesos cerebrales responsables de nuestra impresión del paso del tiempo».

En cualquier caso, Albert Einstein afirma siempre tajantemente: «Pasado, presente y futuro son sólo ilusiones, aunque sean ilusiones pertinaces.»

El paso del tiempo ha encandilado e intrigado a generaciones enteras de filósofos, artistas y poetas, pero para la ciencia física, desde comienzos del siglo XX, «el tiempo, en su marco conceptual, no transcurre, sino que simplemente es» (Paul Davies).

Jacques Bergier - Melquisedeque

  Melquisedeque aparece pela primeira vez no livro Gênese, na Bíblia. Lá está escrito: “E Melquisedeque, rei de Salem, trouxe pão e vinho. E...