sexta-feira, 8 de abril de 2016
Radiación Cósmica
Los rayos cósmicos, también llamados radiación cósmica, son partículas subatómicas procedentes del espacio exterior cuya energía, debido a su gran velocidad, es muy elevada: cercana a la velocidad de la luz. Se descubrieron cuando se comprobó que la conductividad eléctrica de la atmósfera terrestre se debe a ionización causada por radiaciones de alta energía.
En 1911, Victor Franz Hess, físico austríaco, demostró que la ionización atmosférica aumenta proporcionalmente a la altitud. Concluyó que la radiación debía proceder del espacio exterior.
El descubrimiento de que la intensidad de radiación depende de la altitud indica que las partículas integrantes de la radiación están eléctricamente cargadas y que las desvía el campo magnético terrestre.
Ernest Rutherford y sus colaboradores, contraria y anteriormente a las experiencias de Hess, supusieron que la ionización observada por el espectroscopio se debía a la radiactividad terrestre, ya que, medidas realizadas en 1910 en la base y la cúspide de la Torre Eiffel, así lo detectaban.
Robert Andrews Millikan acuñó la expresión rayos cósmicos tras sus propias mediciones que concluyeron en que, efectivamente, eran de origen muy lejano, incluso exterior al Sistema Solar.
Historia
Tras el descubrimiento de la radiactividad por Henri Becquerel en 1896, se aceptaba que la electricidad atmosférica - ionización del aire - era provocada exclusivamente por la radiación generada a su vez por elementos radiactivos en el suelo y por los gases radiactivos o isótopos de radón que aquellos producen. La posterior medición, durante la década de 1900 a 1910, de la tasa de ionización (ritmo de ionización del aire) respecto a la altitud demostró un descenso que podía explicarse por la absorción de la radiación ionizante por el aire interpuesto.
Descubrimiento
En 1909, Theodor Wulf desarrolló el primer electrómetro. Éste era un instrumento diseñado para medir la tasa de producción de iones dentro de un contenedor sellado herméticamente. Wulf usó este instrumento para demostrar que los niveles de radiación ionizante en la cúspide de la Torre Eiffel eran mayores que en su base. Sin embargo, su artículo, publicado en Physikalische Zeitschrift, no encontró amplia aceptación. En 1911, Domenico Pacini observó variaciones simultáneas de la tasa de ionización sobre un lago, sobre el mar y a una profundidad de 3 metros bajo la superficie. Del descenso observado bajo el agua, Pacini concluyó que una parte de la ionización se debe a fuentes distintas de la radiactividad terrestre.
Más tarde, en 1912, Victor Hess elevó tres electrómetros Wulf de precisión mejorada a una altitud de 5300 metros usando un globo aerostático y encontró que la tasa de ionización se multiplicaba aproximadamente por cuatro en comparación con la que podía medirse a nivel del suelo.Hess también descartó al Sol como la fuente de radiación responsable mediante un nuevo ascenso en globo durante un eclipse de sol casi total. Cuando la Luna estaba bloqueando la mayor parte de la radiación solar visible, Hess todavía pudo medir una tasa de ionización en aumento con la altura,y concluyó: "La mejor explicación al resultado de mis observaciones viene dada por la suposición de que una radiación de un enorme poder de penetración entra en nuestra atmósfera desde arriba". En 1913-1914, Werner Kolhörster confirmó las primeras observaciones de Hess al medir el incremento de la tasa de ionización a 9 km de altitud.
Hess recibió el Premio Nobel de física en 1936, por su descubrimiento.
El vuelo del globo de Hess tuvo lugar el 7 de agosto de 1912. Exactamente 100 años después, el 7 de agosto de 2012, el vehículo Mars Science Laboratory midió los niveles de radiación ionizante por vez primera en otro planeta por medio de su Detector de Medida de Radiación (RAD, por las siglas en inglés de Radiation Assessment Detector).
Origen
Aún no está claro el origen de los rayos cósmicos. Se sabe que, en los períodos en que se emiten grandes erupciones solares, el Sol emite rayos cósmicos de baja energía, pero estos fenómenos estelares no son frecuentes. Por lo tanto, no son motivo de explicación del origen de esta radiación. Tampoco lo son las erupciones de otras estrellas semejantes al Sol. Las grandes explosiones de supernovas son, al menos, responsables de la aceleración inicial de gran parte de los rayos cósmicos, ya que los restos de dichas explosiones son potentes fuentes de radio, que implican presencia de electrones de alta energía.
En 2007, un grupo de científicos argentinos del Observatorio Pierre Auger realizó un espectacular descubrimiento que inauguró una nueva rama de la astronomía. Este grupo encontró evidencias de que la mayor parte de las partículas de rayos cósmicos proviene de una constelación cercana: Centaurus.Esta constelación contiene una galaxia de núcleo activo, cuyo núcleo se debe a existencia de un agujero negro (probablemente supermasivo), al caer la materia a la ergosfera del agujero negro y rotar velozmente.
A enormes velocidades, centrífugamente, se fuga parte de esa materia, constituida por protones y neutrones. Al alcanzar la Tierra (u otros planetas con atmósferas suficientemente densas) sólo llegan los protones, los cuales, tras chocar contra las capas superiores atmosféricas, caen en cascadas de rayos cósmicos. El descubrimiento observado en Centaurus parece ser extrapolable a todas las galaxias de núcleos activados por agujeros negros.
También se cree que, como resultado de las ondas de choque procedentes de las supernovas que se propagan hasta el espacio interestelar, en éste se genera aceleración adicional. No existen pruebas directas de que las supernovas contribuyan de manera significativa a los rayos cósmicos. Sin embargo, se sugiere que las estrellas binarias de rayos X pueden ser fuentes de rayos cósmicos. En esos sistemas, una estrella normal cede masa a su complementaria, a una estrella de neutrones o bien a un agujero negro.
Los estudios radioastronómicos de otras galaxias muestran que éstas también contienen electrones de alta energía. Los centros de algunas galaxias emiten ondas de radio de mucha mayor intensidad que la Vía Láctea. Esto indica que contienen fuentes de partículas de alta energía.
Componentes a nivel del mar
Los rayos cósmicos que alcanzan la atmósfera en su capa superior son principalmente (98%) protones y partículas alfa de alta energía. El resto está constituido por electrones y partículas pesadas ionizadas. A éstas se les denomina partículas primarias.
Estas partículas cargadas interaccionan con la atmósfera y el campo magnético terrestre, se convierten en partículas secundarias (son producto de la interacción de las partículas primarias con la atmósfera) y se distribuyen de tal modo que, debido al campo magnético, la mayor intensidad de las partículas que alcanzan el suelo ocurre en los polos.
Por tanto, la componente de partículas que alcanzan el suelo varía según la altitud (a mayor altura, menos atmósfera con la cual interaccionar) y por la latitud (a mayor latitud, mayor cantidad de partículas desviadas por el campo magnético), y propician cierta variación con el ciclo solar (de 11 años).
A nivel del mar y a una latitud de unos 45º N, los componentes importantes de estas partículas son:
muones: 72%
fotones: 15%
neutrones: 9%
Las dosis recibidas debido a los rayos cósmicos varían entre 300 μSv (microsieverts) y 2 000 μSv al año. Promediada por la población, datos de ocupación y otros factores, se encuentra un valor promedio de 380 μSv/año.
Cascadas de rayos cósmicos
Las lluvias o cascadas de partículas subatómicas se originan por acción de rayos cósmicos primarios, cuya energía puede ser superior a 1020 eV (electronvoltios): cien millones de veces superior a la que se puede impartir a una partícula subatómica en los más potentes aceleradores de partículas.
Cuando un rayo cósmico de alta energía llega a la atmósfera terrestre interactúa con átomos de ésta, choca contra los gases y libera electrones. Este proceso excita los átomos y genera nuevas partículas. Éstas, a su vez, colisionan contra otras y provocan una serie de reacciones nucleares, que originan nuevas partículas que repiten el proceso en cascada. Así, puede formarse una cascada de más de 1011 nuevas partículas. Los corpúsculos integrantes de las cascadas se pueden medir con distintos tipos de detectores de partículas, generalmente basados en la ionización de la materia o en el efecto Cherenkov.
Jet (Astronomía)
En astronomía, Jet (también llamado jet o chorro relativista) es un término usado en varios contextos para referirse a chorros de materia que se encuentran generalmente asociados a discos de acreción, tanto en formación estelar, donde el jet es formado por materia con exceso de momento angular que no es incorporado en la estrella que está formándose, como en agujeros negros.
En estos, el jet puede tener tal velocidad que desde la Tierra parece moverse a velocidad mayor que la de la luz. Algunos de estos agujeros con jets pueden ser muy masivos y encontrarse en el centro de galaxias activas formando quásares o radiogalaxias muy energéticas.
Las observaciones realizadas a los jets determinaron que, como desde hace mucho tiempo se sabía, son eléctricamente neutros a grandes escalas (mayores que la longitud de Debye), están formados de plasma, es decir el estado de la materia en que electrones y protones se encuentran por separado. Los jets también llevan mucha más energía de la que al principio se creía. Las medidas de rayos X alcanzaron su punto máximo en 10 000 electronvoltios. Se calcula que los jets alcanzan 99,9 % de la velocidad de la luz y pueden llevar tanta masa como el planeta Júpiter.
Jets similares, aunque a una más pequeña escala, pueden desarrollarse alrededor de los discos de acreción de estrellas de neutrones y agujeros negros. A menudo llaman microcuasares a estos sistemas. Un ejemplo famoso es SS433, cuyo jet se ha observado que tiene una velocidad de 0,23c, aunque otros microcuasares aparentan tener chorros a velocidades mayores. Incluso otros más débiles y más pequeños pueden ser asociados con muchos sistemas binarios; el mecanismo de acreción para estos jets puede ser similar a los procesos de reconección magnéticos observados en magnetosfera de la Tierra y el viento solar, que también son plasmas pero no resultan ser colimados ni viajan a velocidades tan altas.
La materia expulsada a través de los jets resulta ser colimada por el campo magnético de la fuente, produciendo que la trayectoria sea lineal en sectores cercanos a la fuente. El jet mismo lejos de la fuente queda determinado por la acción de su propio campo magnético (ecuaciones de magnetohidrodinámica) el cual para la mayoría de los casos se asume toroidal, aunque una buena aproximación se puede obtener con las ecuaciones electrodinámicas.
En estos, el jet puede tener tal velocidad que desde la Tierra parece moverse a velocidad mayor que la de la luz. Algunos de estos agujeros con jets pueden ser muy masivos y encontrarse en el centro de galaxias activas formando quásares o radiogalaxias muy energéticas.
Las observaciones realizadas a los jets determinaron que, como desde hace mucho tiempo se sabía, son eléctricamente neutros a grandes escalas (mayores que la longitud de Debye), están formados de plasma, es decir el estado de la materia en que electrones y protones se encuentran por separado. Los jets también llevan mucha más energía de la que al principio se creía. Las medidas de rayos X alcanzaron su punto máximo en 10 000 electronvoltios. Se calcula que los jets alcanzan 99,9 % de la velocidad de la luz y pueden llevar tanta masa como el planeta Júpiter.
Jets similares, aunque a una más pequeña escala, pueden desarrollarse alrededor de los discos de acreción de estrellas de neutrones y agujeros negros. A menudo llaman microcuasares a estos sistemas. Un ejemplo famoso es SS433, cuyo jet se ha observado que tiene una velocidad de 0,23c, aunque otros microcuasares aparentan tener chorros a velocidades mayores. Incluso otros más débiles y más pequeños pueden ser asociados con muchos sistemas binarios; el mecanismo de acreción para estos jets puede ser similar a los procesos de reconección magnéticos observados en magnetosfera de la Tierra y el viento solar, que también son plasmas pero no resultan ser colimados ni viajan a velocidades tan altas.
La materia expulsada a través de los jets resulta ser colimada por el campo magnético de la fuente, produciendo que la trayectoria sea lineal en sectores cercanos a la fuente. El jet mismo lejos de la fuente queda determinado por la acción de su propio campo magnético (ecuaciones de magnetohidrodinámica) el cual para la mayoría de los casos se asume toroidal, aunque una buena aproximación se puede obtener con las ecuaciones electrodinámicas.
Galaxia Activa
Una galaxia se dice activa cuando una fracción significativa de la radiación electromagnética que emite no es debida a los componentes "normales" de una galaxia (estrellas, polvo y gas interestelar).
El término núcleo activo de galaxia (AGN, por sus siglas en inglés) se usa frecuentemente para denominar este tipo de objeto, ya que la energía emitida por las galaxias activas se debe aparentemente a una región compacta en su centro. En algunos casos, esta región central emite chorros de partículas que se extienden por grandes distancias, provocando emisión desde regiones extendidas, si bien en todos los casos la fuente última de la energía emitida es la región central.
El modelo teórico más aceptado unifica distintos tipos de objetos, tales como galaxias seyfert, quasares y blazares, los que aparentan ser distintos debido al ángulo de inclinación en el cielo.
Según el modelo unificado, la energía se genera por materia (gas y polvo) que cae a un agujero negro supermasivo, de entre 10^6 y 10^9 masas solares. El material al caer forma un disco de acreción, debido a la conservación de momento angular. El calentamiento por fricción causa que el material se transforme en plasma y genere un campo magnético a través del mecanismo alfa. La acreción es altamente eficiente para transformar materia en energía, pudiendo convertir hasta la mitad de la masa en reposo de la materia en energía (en comparación, por ejemplo, al pequeño porcentaje de eficiencia de la fusión nuclear).
Se cree que cuando el agujero negro ha consumido todo el gas y polvo de su vecindad, la galaxia activa deja de emitir grandes cantidades de energía y se transforma en una galaxia normal. Este modelo se apoya en lo que parece ser un agujero negro supermasivo sin actividad en el centro de la Vía Láctea y otras galaxias cercanas. También este modelo explica el hecho de que los quasares sean mucho más frecuentes en el universo temprano.
Las galaxias activas se dividen en dos grupos: las que resultan muy brillantes al ser observadas con un radio-telescopio (radio-loud AGN) y las que no (radio-quiet AGN).
Historia
En 1909 Edward A. Fath descubre líneas de emisión en un espectro de la "nebulosa espiral" NGC 1068. El espectro se componía de líneas de absorción junto con líneas de emisión como las que se veían en las nebulosas gaseosas. Carl K. Seyfert descubre en 1943 que algunas galaxias tienen un núcleo, en apariencia puntual, que es el originario de estas líneas de emisión. Este es el primer trabajo sistemático en busca de este tipo especial de galaxias. La emisión de estas galaxias era muy parecida a las líneas de emisión de una nebulosa planetaria sobreimpresas a un espectro típico de una estrella como el Sol (tipo G). La anchura de las líneas es atribuida por Seyfert al desplazamiento Doppler, de esta manera se obtienen velocidades de hasta 8500 km/s en la zona nuclear. Esto se correspondería con un gas muy caliente que se mueve a alta velocidad, en contraste con los 300 km/s a los que se mueven como promedio las estrellas y el gas de una galaxia espiral normal. A este tipo de galaxias se les denomina galaxias Seyfert.
En los años 50 y 60 las galaxias activas adquieren un papel importante en la astronomía que llega hasta hoy día. Tras el desarrollo inicial de la radioastronomía por los pioneros en esta área como Jansky y Reber se empiezan a realizar las primeras exploraciones del cielo en radio, buscando posiciones precisas de las fuentes y la identificación óptica de éstas. Smith en 1951 obtiene posiciones precisas para Cyg A, Cas A y otras fuentes. Con estas posiciones, Baade y Minkowski en 1954 identifican ópticamente Cyg A y Cas A, pudiendo estimarse sus distancias a partir de sus espectros. Se observan galaxias muy distorsionadas como el origen de esta emisión. Estas fuentes presentaban luminosidades altísimas en radio, incluso más fuertes que en visible. Se descubren más tarde un tipo de galaxias con núcleos muy brillantes en longitudes de onda de radio, a las que llamarían "radio estrellas", que, tras comprobar que eran fuentes extragalácticas pasan a denominarse cuásares. Estos cuásares son galaxias del tipo de Cyg A situados a grandes distancias.
Sandage (1965) encuentra una gran población de objetos que, aún sin tener una emisión fuerte en radio, se asemeja en todos los demás aspectos a los cuásares. Estos objetos presentan una gran emisión en ultravioleta (UV) con respecto al óptico y son conocidos como QSO (de Quasi-Stellar Objets). Se encuentra un paralelismo entre estos objetos, situados en núcleos de galaxias muy lejanas, con las galaxias Seyfert. Más tarde se encuentran galaxias emisoras de radio de un tipo denominado BL Lac, galaxias con regiones nucleares emisoras de baja ionización (LINERs) y otras galaxias con una fenomenología parecida. Todas las características comunes llevaron a postular la idea de un origen común de todos estos diferentes objetos englobándolos dentro del concepto de AGN.
Blazar
Un blazar es una fuente de energía muy compacta y altamente variable, asociada a un agujero negro situado en el centro de una galaxia. Los blazares están entre los fenómenos más violentos del Universo, y son un tema importante en la astronomía extragaláctica.
Los blazares son un tipo particular de núcleo activo galáctico (en inglés Active galactic nucleus o AGN), caracterizado por emitir un jet relativista. Actualmente se acepta que un blazar es un cuásar, con la salvedad de que su jet se encuentra apuntando en dirección a la Tierra. El hecho de que observemos el jet orientado directamente a nosotros, explica tanto la intensidad como la rápida variabilidad y rasgos de los distintos tipos de blazars. Muchos blazars parecen experimentar velocidades superlumínicas dentro de los primeros pársecs de sus jets, probablemente debido a los frentes de onda de choque relativísticos.
Los blazars no constituyen un grupo homogéneo, y se dividen en dos grupos:
cuásares altamente variables, (denominados también en inglés "OVV", de Optically Violent Variable quasars), que son un pequeño subgrupo dentro de los quásares.
objetos BL Lacertae, objetos «BL Lac» o simplemente «BL Lacs».
El nombre de "blazar" fue acuñado originalmente en 1978 por el astrónomo Edward Spiegel para indicar la combinación de estas dos clases. Algunos de estos objetos pueden ser blazares intermedios, los cuales parecen tener una mezcla de las propiedades de ambos.
El cuadro generalmente aceptado de estos quasares OVV es que son, intrínsecamente, potentes radio galaxias, mientras que los objetos BL Lac son, básicamente, galaxias de fuentes de radio débil. En ambos casos, los centros galácticos son de galaxias gigantes elípticas.
Los modelos alternativos, por ejemplo las microlentes gravitacionales, pueden responder a las observaciones de algunos blazars pero no son consistentes con las propiedades generales.
También se considera que los agujeros negros configuran blazares cuando los chorros de plasma que les pueden estar asociados son visibles. Se cree que los cuásares (y blázares) son propios de los primeros estadios de evolución de las galaxias; lo que explicaría por qué sólo los observamos a distancias de miles de millones de años luz (y por tanto muy antiguos) mientras tales objetos no se han encontrado en galaxias cercanas.
Las galaxias que contienen un núcleo activo (AGN) se denominan también galaxias activas.
Microcuásar
Un microcuásar o microquasar es un objeto galáctico que posee características similares a las observadas en los cuasares. Es decir, representa una réplica a pequeña escala de los últimos.
Características
Sus características comunes con los cuásares son la emisión variable en radio, a veces en forma de jets bipolares (es decir, chorros de materia simétricos y opuestos) y un disco de acrecimiento alrededor de un objeto compacto, por lo general una estrella de neutrones o un agujero negro. En los cuásares, el agujero negro es supermasivo, lo que significa que tiene una masa de millones de masas solares. En cambio, en el caso de los microcuásares el objeto compacto tiene solamente unas pocas masas solares.
Los microcuásares son en realidad una estrella binaria de Rayos X —una estrella normal muy masiva y un objeto compacto— que desde la Tierra se detecta también en radio. El sistema está ligado gravitacionalmente, orbitando un objeto alrededor del otro. Cuando ambas estrellas están suficientemente cerca entre sí se produce transferencia de materia de la estrella masiva hacia el objeto compacto, debido a la atracción gravitatoria. Parte de esta energía se libera en forma de haces de partículas que viajan a velocidades cercanas a la de la luz, produciendo espectaculares emisiones de radiación. En algunos, debido a un efecto óptico por la orientación del jet con respecto al observador, se observa un movimiento superlumínico, en el que la masa del jet aparenta moverse a una velocidad superior a la de la luz. El disco de acrecimiento es detectado con una luminosidad muy alta en luz visible y rayos X. La diferencia entre los discos de acrecimiento de estos objetos y de los cuásares está en que la masa acrecida procede de la estrella compañera, mientras que en el caso de los cuásares la masa procede de la galaxia que lo rodea.
Estudio de microcuásares
Los microcuásares son muy importantes para el estudio de los jets relativistas. Los jets se forman cerca del agujero negro, y las escalas temporales, es decir, el tiempo en que ocurren procesos cerca del mismo son proporcionales a la masa del agujero. De esta manera, procesos que duran del orden de siglos en los cuásares tienen lugar en escalas de días para los microcuásares.
Los microcuásares son también sospechosos de contribuir a la producción de rayos cósmicos cuyo origen, casi cien años después de su descubrimiento, sigue siendo un misterio.
La revista Nature anunciaba en la portada el descubrimiento de los microcuásares (1992)1 y de la primera fuente superlumínica en la galaxia (1994).La revista Science publicaba en el mes de junio de 2006 que el candidato a microcuásar llamado LS I +61 303 fue observado por el telescopio MAGIC, revelando emisión de rayos gamma. Esta radiación presentaba una propiedad muy interesante: la intensidad de la emisión de rayos gamma de LS I +61 303 varía con el tiempo.Los microcuásares son considerados laboratorios galácticos que permiten contrastar aspectos de la teoría de la relatividad general y comprensión de la física en el límite de los campos gravitacionales más intensos.
Cuásar
Un cuásar o quasar (acrónimo: Fuente de Radio Cuasi- Estelar en inglés de quasi-stellar radio source) es una fuente astronómica de energía electromagnética, que incluye radiofrecuencias y luz visible.
Generalidades
Los cuásares visibles muestran un desplazamiento al rojo muy alto. El consenso científico dice que esto es un efecto de la expansión métrica del universo entre los cuásares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los cuásares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los cuásares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernovas y brotes de rayos gamma. Los cuásares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de un billón de soles.
En un principio se supuso que los objetos cuasi-estelares o cuásares eran agujeros blancos aunque el avance del estudio de su formación y características ha descartado tal supuesto.
En telescopios ópticos, la mayoría de los cuásares aparecen como simples puntos de luz, aunque algunos parecen ser los centros de galaxias activas. La mayoría de los cuásares están demasiado lejos para ser vistos por telescopios pequeños, pero el 3C 273, con una magnitud aparente de 12,9 es una excepción. A una distancia de 2440 millones de años luz, es uno de los objetos más lejanos que se pueden observar directamente con un equipo amateur.
Algunos cuásares muestran cambios rápidos de luminosidad, lo que implica que son pequeños, ya que un objeto no puede cambiar más rápido que el tiempo que tarda la luz en viajar desde un extremo al otro. El corrimiento al rojo más alto conocido de un cuásar es de 6,4.
Se cree que los cuásares están alimentados por la acreción de materia de agujeros negros supermasivos en el núcleo de galaxias lejanas, convirtiéndolos en versiones muy luminosas de una clase general de objetos conocida como galaxias activas. No se conoce el mecanismo que parece explicar la emisión de la gran cantidad de energía y su variabilidad rápida. El conocimiento de los cuásares ha avanzado muy rápidamente, aunque no hay un consenso claro sobre sus orígenes.
Propiedades de los cuásares
Se conocen más de 200 000 cuásares y todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los cuásares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc (780 millones de años luz) y el más lejano a 6 Gpc (13 000 millones de años luz). La mayoría de los cuásares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuásares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.
Aunque aparecen débiles cuando se observan por telescopios ópticos, su corrimiento al rojo alto implica que estos objetos se sitúan a grandes distancias, por lo que hace de los cuásares los objetos más luminosos en el universo conocido. El cuásar que aparece más brillante en el cielo es el 3C 273 de la constelación de Virgo. Está a una distancia de ~670 millones de parsecs, o sea, en torno a 2200 millones de años luz. Tiene una magnitud aparente de 12,8, lo suficientemente brillante para ser observado desde un telescopio pequeño, pero su magnitud absoluta es de -26,7. A una distancia de 10 pársecs (unos 33 años luz), este objeto brillaría en el cielo con mayor fuerza que el Sol. La luminosidad de este cuásar es unos dos billones (2 × 1012) de veces mayor que la del Sol, o cien veces más que la luz total de una galaxia media como la Vía Láctea.
El cuásar hiperluminoso APM 08279+5255 tenía, cuando se descubrió en 1998, una magnitud absoluta de -32,2, aunque las imágenes de alta resolución del telescopio espacial Hubble y el telescopio Keck revelaron que este sistema era una lente gravitacional. Un estudio del fenómeno de lente gravitacional en este sistema sugiere que se ha aumentado en un factor de 10. Se trata, de todas formas, de un objeto más luminoso que los cuásares más cercanos como el 3C 273. Se piensa que el HS 1946+7658 tiene una magnitud absoluta de -30,3, pero que también ha sido aumentada por el efecto de lente gravitacional.
Se ha descubierto que los quásares varían de luminosidad en escalas de tiempo diversas. Algunas varían su brillo cada algunos meses, semanas, días u horas. Esta evidencia ha permitido a los científicos teorizar que los cuásares generan y emiten su energía desde una región muy pequeña, puesto que cada parte del quásar debería estar en contacto con las otras en tal escala de tiempo para coordinar las variaciones de luminosidad. Como tal, un cuásar que varía en una escala de tiempo de algunas semanas no puede ser mayor que algunas semanas luz de ancho.
Los cuásares manifiestan muchas propiedades idénticas a las de las galaxias activas: la radiación no es térmica y se ha observado que algunas tienen jets y lóbulos como las radiogalaxias. Los cuásares pueden ser observados en muchas zonas del espectro electromagnético como radiofrecuencia, infrarrojos, luz visible, ultravioletas, rayos X e incluso rayos gamma. La mayoría de los cuásares son más brillantes en el marco de referencia de ultravioleta cercano, cerca de la línea Lyman-alfa de emisión del hidrógeno de 1216 Å o (121,6 nm), pero debido a su corrimiento al rojo, ese punto de luminosidad se observa tan lejos como 9000 Å (900 nm) en el infrarrojo cercano.
Generación de emisión
Ya que los cuásares muestran propiedades en común con todas las galaxias activas, muchos científicos han comparado las emisiones de los cuásares con aquellas de galaxias activas pequeñas debido a su similitud. La mejor explicación para los cuásares es que están alimentados por agujeros negros supermasivos. Para crear una luminosidad de 1040 W (el brillo típico de un quásar), un agujero negro supermasivo debería consumir la materia equivalente a diez estrellas por año. Los quásares más brillantes conocidos deberían devorar 1000 masas solares de materia cada año. Se cree que los quásares se «encienden» y «apagan» dependiendo de su entorno. Una implicación es que un cuásar no continuaría alimentándose a esa velocidad durante 10 000 millones de años, lo que explicaría satisfactoriamente por qué no hay cuásares cercanos. En este marco, después de que un cuásar acabase de consumir el gas y el polvo, se convertiría en una galaxia normal.
Los cuásares también proporcionan algunas pistas sobre el fin de la reionización del Big Bang. Los quásares más viejos (z > 4) muestran un efecto Gunn-Peterson y tienen zonas de absorción en el frente de ellos indicando que el medio intergaláctico en ese momento era gas neutro. Los quásares más recientes no muestran zonas de absorción, pero en su lugar, sus espectros muestran una parte puntiaguda conocida como bosque Lyman-alfa. Esto indica que el medio intergaláctico está sometido a una reionización hacia plasma y que el gas neutro solo existe en cúmulos pequeños.
Otra característica interesante de los quásares es que muestran evidencias de elementos más pesados que el helio. Esto significa que esas galaxias estuvieron sometidas a una fase masiva de formación estelar creando estrellas de población III entre el momento del Big Bang y los primeros quásares observados. La luz de esas estrellas pudo haber sido observada por el telescopio espacial Spitzer de la NASA, aunque a finales de 2005 esta interpretación aguardaba ser confirmada.
Historia de la observación de cuásares
Los primeros cuásares fueron descubiertos con radiotelescopios a finales de los años 1950. Muchos fueron registrados como fuentes de radio que no tenía un objeto visible correspondiente. Utilizando telescopios pequeños y el telescopio Lovell como un interferómetro, los objetos mostraban que tenía un tamaño angular muy pequeño.4 Cientos de estos objetos fueron registrados hacia 1960 y se publicó el Tercer Catálogo de Cambridge de Radio-fuentes (3C) mientras los astrónomos exploraban el cielo con telescopios ópticos. En 1960, la fuente de radio 3C 48 fue finalmente vinculada con un objeto óptico. Los astrónomos detectaron lo que parecía una estrella azul tenue en la posición de la fuente de radio y obtuvieron su espectro: conteniendo muchas líneas de emisión desconocidas, el espectro anómalo resistía una interpretación.
En 1962 se consiguió un avance destacado. Otra fuente de radio, la 3C 273, fue pronosticada para sufrir cinco ocultaciones por la Luna. La medidas obtenidas por Cyril Hazard y John Bolton durante una de las ocultaciones utilizando el Observatorio de Parkes permitió a Maarten Schmidt una identificación óptica del objeto y obtener su espectro visible con el telescopio Hale de Monte Palomar. Este espectro reveló las mismas líneas de emisión extrañas. Schmidt se dio cuenta que se trataba de las líneas del espectro del hidrógeno con un corrimiento al rojo del 15,8 %. Este descubrimiento mostraba que la 3C 273 se estaba alejando a una velocidad de 47 000 km/s.5 Este descubrimiento revolucionó la observación de quásares y permitía a otros astrónomos buscar corrimientos al rojo en las líneas de emisión de otras fuentes de radio. La 3C 48 mostró tener un corrimiento al rojo del 37 % de la velocidad de la luz.
El término cuásar (en inglés, quasar) fue acuñado por el astrofísico estadounidense de origen chino, Hong-Yee Chiu, en 1964, en Physics Today, para describir estos objetos extraños:
Hasta el momento, el torpemente largo nombre de 'quasi-stellar radio sources' [fuentes de radio casi estelares] se ha utilizado para describir estos objetos. Debido a que la naturaleza de estos objetos es completamente desconocida, es difícil preparar una nomeclatura corta y apropiada para ellos ya que sus propiedades esenciales son obvias en su nombre. Por conveniencia, la forma abreviada ‘quasar’ se utilizará durante este artículo
Hong-Yee Chiu en Physics Today, mayo de 1964
Más tarde se descubrió que no todos los cuásares, alrededor de sólo un 10 %, tenían emisiones de radio altas (los radio-intenso). Por lo tanto, el nombre de QSO (Objeto cuasi-estelar) se utiliza para referirse a estos objetos, incluyendo las clase radio-intensa (RLQ) y radio-silenciosa (RQQ).
Un tema de debate durante los años 1960 fue si los cuásares eran objetos cercanos o lejanos como implicaba su corrimiento al rojo. Se sugirió que el corrimiento al rojo de los cuásares no era debido al efecto Doppler sino a que la luz escapaba de un muro gravitacional. Sin embargo, se creía que una estrella de suficiente masa para formar tal muro, sería inestable.6 Los quásares también mostraban unas líneas de emisión inusuales que sólo se habían visto anteriormente en nebulosas de baja densidad de gas caliente, lo que sería demasiado difuso para generar la energía observada y mantenerse dentro del muro gravitacional.Hubo también preocupaciones serias respecto la idea cosmológica de los quásares lejanos. Un argumento firme contra esto es que las energías implicadas en los quásares excedían todos los procesos de conversión de energía conocidos, incluyendo la fusión nuclear. En ese momento, hubo algunas sugerencias sobre que los cuásares eran alguna forma desconocida de antimateria estable y que eso podía influir en su brillo. Esta objeción se eliminó con la propuesta del mecanismo del disco de acrecimiento en los años setenta, y en la actualidad la distancia cosmológica de los quásares es aceptada por el consenso científico.
En 1979, el efecto de lente gravitacional pronosticado por la Teoría General de la Relatividad de Einstein fue confirmado por la observación por primera vez con imágenes del doble cuásar 0957+561.8
En la década de 1980, se desarrollaron modelos unificados en el que los cuásares fueron vistos como una clase de galaxias activas, y había emergido en un consenso general que en la mayoría de los casos era el ángulo de visión lo que distinguía unas clases de otras, como los blazars y las radiogalaxias. Se creía que la luminosidad elevada de los quásares era el resultado de la fricción causada por el gas y el polvo cayendo en los discos de acrecimiento de agujeros negros supermasivos, que podían convertir un 10 % de masa de un objeto en energía, a diferencia del 0,7 % obtenido en procesos de fusión nuclear que dominan la producción de energía en estrellas solares.
Este mecanismo también se cree que explica por qué los quásares eran más comunes al comienzo del universo, ya que esta producción de energía finaliza cuando el agujero negro supermasivo consume todo el gas y polvo que tiene cerca. Esto significa que es posible que la mayoría de las galaxias, incluyendo la Vía Láctea, ha pasado a través de una etapa activa, apareciendo como un quásar u otra clase de galaxia activa dependiente de la masa del agujero negro y la rotación de acrecimiento, y que son inactivos ahora debido a la falta de materia para alimentar sus agujeros negros centrales que generan la radiación.
APM 08279+5255
El APM 08279+5255 es un cuásar hiperluminoso, tenía, cuando se descubrió en 1998, una magnitud absoluta de -32,2, aunque las imágenes de alta resolución del telescopio espacial Hubble y el telescopio Keck revelaron que este sistema era una lente gravitacional. Un estudio del fenómeno de lente gravitacional en este sistema sugiere que se ha aumentado en un factor de 10. Se trata, de todas formas, de un objeto más luminoso que los quasares más cercanos como por ejemplo el 3C 273.
En julio del 2011, la revista Astrophysical Journal Letters, ha publicado el hallazgo de lo que hasta el momento se configura como la mayor reserva de agua en el Universo. El descubrimiento se debe a un grupo de astrónomos del Jet Propulsion Laboratory (JPL) de la NASA y del California Institute of Technology (CALTECH).
Assinar:
Postagens (Atom)
Jacques Bergier - Melquisedeque
Melquisedeque aparece pela primeira vez no livro Gênese, na Bíblia. Lá está escrito: “E Melquisedeque, rei de Salem, trouxe pão e vinho. E...