sábado, 2 de abril de 2016

Via Láctea


A Via Láctea, também conhecida como Via Látea, é uma galáxia espiral da qual o Sistema Solar faz parte. Vista da Terra, aparece como uma faixa brilhante e difusa que circunda toda a esfera celeste, recortada por nuvens moleculares que lhe conferem um intrincado aspecto irregular e recortado. Sua visibilidade é severamente comprometida pela poluição luminosa. Com poucas exceções, todos os objetos visíveis a olho nu pertencem a essa galáxia.

Sua idade estimada é de mais de treze bilhões de anos, período no qual passou por várias fases evolutivas até atingir sua forma atual. Formada por centenas de bilhões de estrelas, a galáxia possui estruturas diferenciadas entre si. No bojo central, que possui forma alongada, há uma grande concentração de estrelas, sendo que o exato centro da galáxia abriga um buraco negro supermassivo. Ao seu redor estende-se o disco galáctico, formado por estrelas dos mais diversos tipos, nebulosas e poeira interestelar, dentre outros. É nesta proeminente parte da Via Láctea que se manifestam os braços espirais. Ao seu redor encontram-se centenas de aglomerados globulares. Entretanto, a dinâmica de rotação da galáxia revela que sua massa é muito maior do que a de toda a matéria observável, sendo este componente adicional denominado matéria escura, cuja natureza se desconhece.

Há tempos a humanidade buscou descrever a natureza da galáxia, sendo esta referida em inúmeras lendas e mitos entre vários povos. Embora tenha sido proposto anteriormente, constatou-se que a faixa brilhante de aspecto leitoso (a partir do qual seu nome derivou-se) se tratava na verdade de um grande conjunto de estrelas a partir das observações de Galileu Galilei utilizando um telescópio. Entretanto, nos últimos dois séculos, a concepção científica da Via Láctea passou de uma simples nuvem de estrelas na qual o Sol situava-se próximo ao centro para uma grande galáxia espiral complexa e dinâmica, da qual nossa estrela é somente uma das bilhões existentes, o que aconteceu graças aos avanços tecnológicos de observação, que permitiram sondar estruturas além das nuvens moleculares.

O Sistema Solar localiza-se a meia distância entre o centro e a borda do disco, na região do Braço de Órion, que na verdade trata-se somente de uma estrutura menor entre dois braços principais. Ao redor da galáxia orbitam suas galáxias satélites, das quais destacam-se as Nuvens de Magalhães. O Grupo Local é o aglomerado de galáxias esparso da qual a Via Láctea faz parte, sendo um de seus maiores componentes.

Formação

Ainda não há consenso sobre como ocorreu o processo que resultou na forma atual da Via Láctea. Nossa galáxia possivelmente começou a se originar há mais de treze bilhões de anos quando iniciou o colapso da matéria que compunha o universo primordial. A partir de pontos onde a densidade era relativamente maior, passaram a surgir os primeiros grupos de estrelas que, por sua vez, formaram os aglomerados globulares situados no halo que, de fato, são os componentes mais antigos remanescentes até os dias atuais. No mesmo período, começou a se formar o bojo central, ao redor do qual os aglomerados globulares orbitavam. Tal processo pode ter levado alguns bilhões de anos.

Evidências sugerem que o surgimento do disco galáctico foi um evento praticamente independente. A formação do disco teria se sucedido a partir da absorção de gás de origem extragaláctica que se aglomerava sob forma achatada ao redor do bojo, o que teria durado por cerca de sete bilhões de anos desde a formação do bojo central. Algumas teorias sugerem, contudo, que a galáxia ainda está em formação, com base no fato de que nuvens de gás molecular estão se movendo com alta velocidade nas partes mais externas em direção ao plano galáctico, mas não há consenso de que se trata, de fato, de um processo de incorporação de matéria no disco.No entanto, a observação do processo de formação de outras galáxias sugere que o disco pode ter se formado junto ao halo e ao bojo central.

Pode-se inferir a cronologia de formação estelar a partir da abundância de elementos químicos nas estrelas, utilizando por exemplo a técnica de nucleocosmocronologia. O material inicial visível que existia antes da formação da galáxia era composto somente por hidrogênio, hélio e uma quantidade pequena de lítio. Com o surgimento de estrelas, elementos mais pesados passaram a ser sintetizados e posteriormente liberados no meio interestelar por meio de ventos estelares ou explosões de supernova. Este material, por sua vez, era incorporado na formação de uma nova geração de estrelas que, por consequência, passavam a ter maior fração de outros elementos químicos. Desta forma, a abundância de núcleos atômicos pesados determina se a estrela pertence a gerações mais antigas ou mais recentes sendo possível, portanto, analisar o processo de evolução química da galáxia.

Os aglomerados globulares possuem os menores teores metálicos sendo, portanto, os componentes mais antigos. Sua idade não determina necessariamente a idade da galáxia como um todo, mas fornece um limite máximo que a galáxia pode ter. Este limite geralmente é descrito como sendo aproximadamente 13,2 bilhões de anos.

Em geral, sugere-se que estrelas da população II, velhas e pobres em elementos pesados, foram as primeiras a se formar, sendo que este período de formação se estendeu por somente um bilhão de anos. O disco, conforme o gás extragaláctico incorporava-se, passava a ser povoado por novas e grandes estrelas do tipo I, cuja formação durou pelos doze bilhões de anos subsequentes e se estende até os dias atuais.O auge da atividade de formação estelar possivelmente ocorreu entre onze e sete bilhões de anos atrás, período no qual cerca de noventa por centro das estrelas atuais teriam surgido.

A análise da abundância de elementos mais pesados como oxigênio e magnésio no disco mostra que sua distribuição varia gradualmente conforme a distância ao centro galáctico, sendo mais abundantes em sua parte mais interna. Isto sugere que o disco teria se formado de dentro para fora, uma vez que a maior abundância de elementos pesados significa que mais gerações de estrelas existiram e que, portanto, a região é mais antiga.

Estrutura

A Via Láctea é uma galáxia espiral barrada, formada por quatro estruturas principais. A região central caracteriza-se por um bojo alongado formado sobretudo por estrelas antigas e onde possivelmente encontra-se um buraco negro supermassivo. Ao seu redor está o disco galáctico cujo diâmetro chega a aproximadamente cem mil anos-luz. Neste disco encontram-se estrelas jovens, nebulosas e regiões de formação estelar, que se organizam de forma a criar os quatro braços espirais principais da galáxia. Por fim, ao redor destas estruturas está o halo galáctico, cujos componentes mais proeminentes são os aglomerados globulares de estrelas antigas que orbitam o centro galáctico. Ao redor da galáxia existe ainda um halo de gases circundantes, além da matéria escura, que, embora indetectável diretamente, afeta sua dinâmica de rotação.A magnitude absoluta integrada da Via Láctea é de -20,6, que seria o brilho visível se toda a luz da galáxia fosse concentrada em um ponto a 32,6 anos-luz do observador.

Componentes

A galáxia contém pelo menos 100 bilhões de estrelas e pode chegar a 400 bilhões, de acordo com estimativas. Poucas são supergigantes, como Rígel e Betelgeuse, enquanto estrelas como o Sol são mais comuns. Contudo, o tipo mais abundante na galáxia são as anãs vermelhas.A massa da galáxia pode ser deduzida a partir da velocidade de rotação ao redor de seu centro ou através de estimativas observacionais. Ainda há muita incerteza no cálculo da massa da Via Láctea, mas sabe-se que toda a matéria visível compreende uma massa da ordem de 1011 massas solares (M☉), da qual mais de noventa por cento corresponde às estrelas e o restante são gases e poeira que, em conjunto, compõem o meio interestelar.No total, quase três quartos da massa da galáxia são formados de hidrogênio e um quarto de hélio, enquanto uma pequena fração (cerca de 2%) é formada por "metais".Contudo, o halo de matéria escura que cerca a galáxia compreende a maior parte de sua massa, cuja totalidade é da ordem de 1012 M☉.

As estrelas estão distribuídas em duas categorias principais que levam em conta a proporção de elementos mais pesados do que o hélio. A população I inclui aquelas em que é relativamente alta a presença de metais, com proporção de 0,2 a 1 vezes a porcentagem existente no Sol. Neste grupo encontram-se as estrelas mais jovens. A população II, por sua vez, é formada por estrelas cuja atmosfera é pobre em metais, embora no núcleo dessas estrelas ainda ocorra a síntese de elementos químicos. Teoricamente considera-se também a população III, que seria a primeira geração de estrelas da galáxia, formadas somente por hidrogênio e hélio, e que não mais existem. A divisão entre estas categorias não é evidente, uma vez que a taxa metálica nas estrelas varia continuamente.

Estima-se que a quantidade de exoplanetas seja tão grande ou mesmo maior que a própria quantidade de estrelas da Via Láctea, sendo que planetas menores, como a Terra, são mais comuns que gigantes gasosos.Cerca de uma em cada cinco estrelas da galáxia são semelhantes ao Sol e, de acordo com dados obtidos pela sonda Kepler, uma em cada seis dessas estrelas possui pelo menos um planeta do tamanho da Terra. Extrapolando-se os dados para toda a galáxia, seriam mais de dezessete bilhões de planetas similares ao nosso em toda a Via Láctea.Exitem ainda planetas interestelares que foram, por algum motivo, retirados de sua órbita original e vagam em meio ao espaço interestelar, sem ligação gravitacional com outra estrela.

Cerca de uma em cada dez estrelas da galáxia são anãs brancas, embora poucas tenham sido detectadas nas vizinhanças do Sol devido à sua baixa luminosidade e tamanho reduzido.A Via Láctea abriga, segundo estimativas, mais de um bilhão de estrelas de nêutrons, remanescentes do fim de estrelas massivas.A galáxia possui ainda milhões de buracos negros originados no fim da vida de estrelas supermassivas, possuindo massas de algumas dezenas de massas solares. Entretanto, somente algumas dezenas foram identificados até o momento. Muitos deles vagam pela galáxia e só podem ser identificados quando interagem com outras estrelas ou poeira interestelar. Existe no centro galáctico somente um buraco negro supermassivo, com milhões de vezes a massa do Sol.

Centro galáctico

O núcleo da Via Láctea se encontra a cerca de 26 mil anos-luz do Sistema Solar, na direção da constelação de Sagitário. Esta região é caracterizada por um bojo central alongado, que possui cerca de 27 mil anos luz de uma extremidade a outra. O centro galáctico, a região mais densamente povoada da galáxia, contém cerca de dez bilhões de estrelas que são principalmente velhas e pobres em metais, embora existam também muitas estrelas jovens e ricas em elementos pesados. Alguns desses componentes formam aglomerados globulares que orbitam ao redor do centro e um deles situa-se no próprio centro, onde a concentração estelar é tão intensa a ponto de encontros estelares serem relativamente comuns.
Observações de estrelas gigantes nas regiões internas da Via Láctea levantam a possibilidade do bojo central ser formado, na verdade, por duas regiões em barra sobrepostas, criando uma espécie de "X" no centro da galáxia, sendo uma barra mais robusta que a outra. Este tipo de estrutura já foi observado em outras galáxias espirais, como na NGC 4469 e NGC 4710.

O exato centro da galáxia abriga um possível buraco negro denominado Sagittarius A. O movimento de nuvens de gases e de estrelas ao seu redor permitiu calcular a sua massa como sendo quatro milhões de vezes superior à massa do Sol, concentrada somente em uma pequena região, o que evidencia se tratar, na verdade, de um buraco negro supermassivo. Estudos indicam que as nuvens moleculares ao redor deste objeto estão sendo atraídas e, a medida que se aproximam do intenso campo gravitacional do buraco negro, passam a formar um disco de acreção e emitem grande quantidade de radiação. Embora não possa ser observado diretamente, observações radioastronômicas levantam ainda mais evidências de sua existência. A presença de buracos negros em núcleos de galáxias semelhantes à Via Láctea é bastante comum.O centro galáctico é possivelmente a origem de estrelas hipervelozes, cuja velocidade excede quinhentos quilômetros por segundo, fazendo com que percam sua ligação gravitacional com a galáxia. Tamanha velocidade surge da interação entre uma estrela e um buraco negro, cujo resultado é o ganho de velocidade da primeira.

Embora a maior parte do bojo não possa ser observada diretamente, uma pequena parte pode ser vista em uma região conhecida como janela de Baade, através da qual a quantidade reduzida de nuvens interstelar permite observar estrelas distantes.A região central da galáxia possui ainda regiões de intensa formação estelar. Detectou-se por meio de observações do Telescópio Fermi recentemente regiões de emissão de raios gama acima e abaixo do plano galáctico, que se estendem por cerca de 25 mil anos-luz e parecem ter origem no centro da Via Láctea, cuja origem pode ser a atividade existente no bojo central.

Disco galáctico

O disco galáctico da Via Láctea concentra a maior parte do gás, poeira e estrelas que formam estruturas em forma de espirais. Estes gases, primariamente hidrogênio e hélio, e poeira formam nuvens moleculares opacas que obstruem, inclusive, nossa visão do centro galáctico. O disco é uma parte proeminente da galáxia, pois contém grande quantidade de estrelas jovens e recém-formadas, que geralmente nascem em grupos a partir de uma mesma nuvem molecular e, por isso, associam-se em aglomerados abertos.A Via Láctea possui um campo magnético que pode ser aferido utilizando-se uma série de técnicas, dentre elas o polarização da luz das estrelas e o Efeito Zeeman, provocado pela mudança dos níveis de energia de um átomo sob um campo magnético. No disco, o campo magnético é de 4 x 10-6 gauss, que segue principalmente a orientação dos braços espirais.

Nesta região predominam as estrelas da população I, que são, de forma geral, as mais novas e possuem teor metálico importante.A população estelar do disco pode ser dividida em três grupos, o primeiro deles caracterizado por estrelas novas que compõem os braços espirais, o segundo compõe o disco fino, uma região com espessura de aproximadamente mil anos-luz onde estão estrelas não tão jovens espalhadas para fora dos braços espirais por conta da rotação diferencial da galáxia e, por fim, o disco grosso, com três mil anos luz de espessura formado por estrelas antigas e dispersas devido a interações com grandes nuvens moleculares que as fizeram se afastar do plano galáctico.Outra possibilidade é que as estrelas do disco grosso tenham se formado em outras galáxias satélites que, posteriormente, foram incorporadas à Via Láctea.É importante notar que não existe uma borda definida para o disco, uma vez que a densidade de estrelas varia gradualmente conforme se afasta do plano galáctico ou do centro galáctico. Nota-se, contudo, que além de um raio de quarenta mil anos-luz, a densidade estelar cai radicalmente.

Mais da metade do gás molecular da Via Láctea se concentra em nuvens similares à Nebulosa de Órion. Esse tipo de nuvem é o berço de formação de um grande número de estrelas de diversos tamanhos, inclusive supergigantes. Estas, por sua vez, possuem um curto período de existência e terminam como titânicas explosões de supernova, cujo material é disperso no meio interestelar e carrega consigo eventuais vestígios de uma antiga nebulosa. O que resta são aglomerados abertos das estrelas de menor massa, como as Plêiades e o Presépio, que possuem tipicamente menos de mil estrelas de vida longa, cuja interação gravitacional com outros componentes da galáxia acabam por desfaze-los posteriormente.

Estrutura espiral

O aspecto espiral do disco é definido pela existência de certos componentes, dentre eles nuvens moleculares (como as regiões HI e HII), estrelas das classes O e B, protoestrelas e populações de cefeidas tipo I, que delineiam seu formato visual e a maior densidade de matéria. Estas estruturas são utilizadas para mapear a galáxia pelo fato de que seu período de existência é relativamente curto não havendo, portanto, tempo suficiente para que tais objetos migrem para fora dos braços espirais.Uma pesquisa, cujo método incluiu a análise da distribuição de estrelas massivas e jovens, revelou que a galáxia possui de fato quatro braços espirais e não dois, como sugeriam estudos anteriores.

Essas quatro estruturas principais do disco são o Braço de Perseus, Scutum-Centaurus, Cygnus e Sagitário. Os dois primeiros são os mais proeminentes da galáxia, ou seja, apresentam uma maior densidade de gases, poeira e estrelas.O braço de Scutum-Centaurus se inicia próximo à extremidade da barra central mais próxima do Sol, enquanto o braço de Perseus tem início na extremidade oposta, ambos com ângulos praticamente iguais em relação à barra central.Dentre as estruturas notáveis no Braço de Perseu se destaca a Nebulosa do Caranguejo, um remanescente de supernova, e a Nebulosa Roseta. Já no Braço de Sagitário, dentre os grandes componentes estão as nebulosas da Lagoa, Trífida e a de Eta Carinae, além de muitos aglomerados estelares.

Apesar do formato de galáxias espirais sugerir sua descrição por meio de curvas espirais logarítmicas, existe uma grande irregularidade na distribuição dos componentes que torna este tipo de modelagem pouco eficiente. Além disso, existem estruturas menores e bastante comuns, como o braço de Órion onde está o Sistema Solar, situado entre o braço de Sagitário e de Perseus, que evidenciam a irregularidade na estrutura da Via Láctea.

Além do Braço de Perseu, existe uma estrutura de menor densidade estelar que parece ser a continuação do Braço de Norma. Próximo à barra central da galáxia, localizam-se duas estruturas que, juntas, circundam o centro galáctico formado uma espécie de anel, o Braço 3 kpc próximo, localizado na parte anterior em relação à nossa posição, e o 3 kpc distante, no lado oposto, ambos situadas a três quiloparsecs ou dez mil anos luz do centro galáctico. Sua origem provém possivelmente do fluxo de material interestelar ao longo da barra central.Além do disco galáctico, em um raio de mais de sessenta mil anos-luz, existe uma corrente de estrelas que circunda toda a galáxia, formando o Anel de Monoceros. A origem mais provável desta estrutura seria o rompimento de antigas e pequenas galáxias satélites que orbitavam a Via Láctea, mas acabaram por ser rompidas pela gravidade da mesma, deixando somente uma trilha de estrelas.

O fato de a galáxia possuir rotação diferencial levantou a questão de como os braços espirais podem perdurar por tanto tempo já que, se cada parte se move a uma velocidade diferente, logo deveriam se desfazer. A solução veio a partir do modelo de onda de densidade, que descreve os braços espirais como sendo ondas de alta densidade que se movem ao longo do disco galáctico delineando o formato espiral. Conforme esta onda passa por uma região, nuvens moleculares se aglomeram e dão origem a estrelas massivas, ocasionando a proeminência visual do braço espiral. Esta onda se move, posteriormente, para adiante, fazendo surgir novas estruturas que continuarão a delinear o formato desta onda, enquanto estruturas antigas são deixadas para trás. Como as nuvens moleculares e estrelas massivas apresentam vida curta, logo perdem seu brilho e se desfazem. Portanto, as ondas se movem com velocidade angular constante ao redor do centro galáctico e, dessa forma, não se dissipam.

Proximidades do Sistema Solar

O Sol situa-se nas proximidades da borda interna do Braço de Órion, uma estrutura menor localizada entre os braços de Perseu e de Sagitário, numa zona onde a densidade estelar é de somente 0,11 estrelas por parsec cúbico, a maioria delas com pequena massa e associadas a sistemas binários ou múltiplos, sendo que num raio de treze anos-luz foram encontrados somente vinte e cinco sistemas estelares. O mais próximo deles é o sistema Alpha Centauri, cujo componente mais próximo é a anã vermelha Proxima Centauri, localizada a pouco mais de quatro anos-luz de distância. Sirius, a estrela mais brilhante do céu (depois do Sol) está a 8,6 anos-luz da Terra.

O Sol atualmente está cruzando uma região do espaço dominada por matéria interestelar denominada Nuvem Interestelar Local. Esta nuvem faz parte de uma estrutura ainda maior, a Bolha Local, em cuja borda está o Sistema Solar, a qual se estende por cerca de 390 anos-luz, e tem origem na associação Scorpius Centaurus. Neste local existe uma intensa atividade de formação estelar, onde surgem estrelas massivas e jovens com classes espectrais O e B. Estas estrelas possuem um período de vida curto, e quando explodem sob a forma de supernovas, originam fortes ventos de gases que varrem as regiões por onde passam, criando bolhas de gases em meio ao espaço interestelar.

A Nebulosa de Gum é o mais próximo remanescente de supernova, com sua parte mais próxima localizada a 450 anos-luz. Dentro desta região estão os fragmentos da Supernova de Vela. A Nebulosa de Órion, a cerca de 1 500 anos-luz, é a mais próxima dentre as grandes regiões de formação estelar. Grandes nuvens moleculares escuras localizam-se a mais de 1 500 anos-luz do Sol, sendo responsáveis pelo obscurecimento em partes do plano galáctico observados a partir da Terra nas constelações de Cisne e Águia. Estas nuvens organizam-se em linha de forma paralela à associações estelares que estão logo atrás, conforme tipicamente observado em galáxias espirais.As Híades, a 150 anos-luz, e as Plêiades, a 410 anos-luz, são os dois aglomerados abertos mais próximos do Sistema Solar.No Braço de Órion existe uma banda denominada Cinturão de Gould, ao longo da qual existem importantes locais de formação estelar da qual, inclusive, a nebulosa de Órion e a associação Scorpius Centaurus fazem parte.

Halo

O halo da Via Láctea é uma região aproximadamente esférica que se estende para além do disco, onde está presente pouca quantidade de gás e poeira e nenhuma atividade de formação estelar. Contudo, existem mais de cem aglomerados globulares identificados (mas estimativas sugerem a existência de cerca de quinhentos), constituídos por estrelas da população II, tão velhas quanto a própria galáxia e com baixa metalicidade. Esses aglomerados executam órbitas elípticas ao redor do centro galáctico em orientações aleatórias que por vezes cruzam o disco, enquanto podem levá-los para até trezentos mil anos-luz de distância do centro galáctico. De fato estes aglomerados globulares, assim como algumas estrelas desviadas para esta região, são os únicos componentes brilhantes que delineiam o formato do halo.Esta região da galáxia pode abrigar ainda um grande número de estrelas anãs vermelhas de pequena massa e pouco brilhantes, o que tornaria difícil sua detecção.Aglomerados cujas distâncias demasiadamente grandes originam dúvidas se realmente fazem parte do halo ou se estão ligados gravitacionalmente a alguma galáxia satélite da Via Láctea, como as Nuvens de Magalhães. Em função de campos de estrelas esparsas do halo terem sido encontrados a cerca de 160 mil anos-luz do centro galáctico, esta distância é usualmente tida como o raio do halo.

Evidências levantadas a partir de dados obtidos pelo Observatório de raios-X Chandra sugerem que a galáxia está envolvida em uma espécie de halo gasoso que se estende por centenas de milhares de anos-luz do seu centro, cuja massa é comparável a massa de todas as estrelas da galáxia. Sua temperatura é extremamente alta, chegando a mais de um milhão de kelvins. Esta nuvem difusa de matéria pode ser a solução para o problema dos bárions na galáxia, cuja quantidade atual é somente a metade da proporção observada nos primórdios do Universo, com base em observações de galáxias distantes.

Circundando a galáxia, constatou-se a presença de um halo que se estende para muito além do disco, composto de matéria escura, cuja natureza é desconhecida. Embora esse tipo de matéria não interaja com a luz, sua presença é detectável por meio de sua influência gravitacional sobre a translação dos objetos ao redor do centro galáctico. De fato a matéria escura compreende cerca de noventa por cento da massa total da galáxia, enquanto toda a matéria visível corresponde à porcentagem restante.A presença desta matéria escura pode ser decisiva na estabilidade das ondas de densidade e, consequentemente, na manutenção dos braços espirais da galáxia por longos períodos.

Rotação

A Via Láctea apresenta um movimento de rotação ao redor do centro galáctico em sentido horário (a partir do polo norte galáctico), contudo de forma diferencial, ou seja, a velocidade da rotação da galáxia como um todo não é a mesma. Este movimento apresenta, assim como outras galáxias espirais, irregularidades em relação ao que é previsto baseado na massa total visível (formada por estrelas, gases e outros componentes) e o que de fato se observa. Nota-se que as regiões mais afastadas da galáxia giram com velocidades maiores do que seria predito pelas Leis de Kepler. Portanto conclui-se que a velocidade de rotação não necessariamente diminui com a distância, mas se mantém praticamente constante a partir do disco.

A curva de rotação descreve a velocidade de rotação dos astros da galáxia em função de sua distância ao centro. Esta velocidade está diretamente relacionada à quantidade de matéria que se encontra no interior desta órbita, sendo possível, portanto, inferir a massa da galáxia por meio do movimento de seus componentes. Conforme revela a curva de rotação da Via Láctea, a velocidade em suas partes externas é maior do que o esperado, o que implica em uma grande quantidade de matéria existe além do disco, muito além do que pode ser observado. Por isso, acredita-se que a anomalia seja provocada pela matéria escura, indetectável diretamente e cuja natureza se desconhece.

O Sol descreve uma órbita ao redor do centro galáctico com velocidade de cerca de 220 quilômetros por segundo, o que resulta em um período orbital de aproximadamente 225 milhões de anos. Desde sua formação, estima-se que o Sol tenha completado seu trajeto vinte vezes. O vetor velocidade do Sol aponta para a constelação de Cisne. Em relação ao referencial de repouso local, ou seja, desconsiderando-se o movimento do Sol e de todas as outras estrelas ao redor do centro galáctico, o Sol se move a 22 quilômetros por segundo na direção da constelação de Hércules, em direção a um ponto denominado ápice solar. O Sol apresenta, ainda, um movimento de oscilação harmônico em relação ao plano galáctico, cruzando-o com um período entre 52 a 74 milhões de anos, com amplitude máxima entre 49 a 93 parsecs acima ou abaixo do plano galáctico. Atualmente estamos a cerca de 15 parsecs acima do plano da Via Láctea.O período destas oscilações da órbita solar aproximadamente coincidem com eventos de extinção em massa, levantando suspeitas de que, ao cruzar regiões densas de nuvens moleculares ou dos braços espirais, perturbações gravitacionais modificariam a órbita de cometas distantes do Sistema Solar que, por sua vez, atingiam nosso planeta.

Proximidades

Algumas galáxias de menor porte orbitam a Via Láctea, sendo, portanto galáxias satélite. A mais próxima delas é a Galáxia Anã do Cão Maior, situada a cerca de 42 mil anos-luz do centro galáctico, seguida pela Galáxia Anã Elíptica de Sagitário. A Grande Nuvem de Magalhães e a Pequena Nuvem de Magalhães são as maiores dentre as galáxias satélite da Via Láctea. Ambas são visíveis a olho nu no hemisfério sul celeste como manchas brilhantes, sendo que a Grande Nuvem de Magalhães é a galáxia mais brilhante vista da Terra depois da própria Via Láctea. Ambas são estruturas irregulares e apresentam regiões de intensa formação estelar. Uma corrente de gases existe ligando as nuvens de Magalhães entre si e também com a Via Láctea, sendo sugerido que teria origem na interação gravitacional entre as galáxias.

As nuvens de Magalhães possivelmente são as responsáveis por criar uma deformação observada no disco galáctico. Embora sua massa seja insignificante comparada com toda a Via Láctea, a interação com a matéria escura circundante faz com que os efeitos gravitacionais das galáxias satélite sejam amplificados a ponto de influenciar a forma do disco galáctico enquanto descrevem sua órbita ao redor do centro da galáxia.

Com exceção das nuvens de Magalhães, as galáxias satélites da Via Láctea são extremamente pequenas e difusas, sendo de difícil observação até mesmo com o auxílio de telescópios. Muitas das galáxias satélites que se aproximam da Via Láctea acabam por ser distorcidas, rompidas e suas estrelas são incorporadas à nossa galáxia, conforme está acontecendo com as duas galáxias mais próximas. O aglomerado globular Omega Centauri apresenta características incomuns, o que leva à suspeita de que seja o núcleo de uma antiga galáxia anã que foi destruída pela Via Láctea, que incorporou seus componentes.

Nossa galáxia integra um grupo composto por mais de trinta galáxias, denominado Grupo Local que, por sua vez, pertence ao Superaglomerado de Virgem. Contudo, somente três galáxias se destacam, sendo a maior delas a Galáxia de Andrômeda, visível a olho nu e distante 2,5 milhões de anos-luz. A Via Láctea, contudo, parece ser o componente mais massivo do grupo. A Galáxia do Triângulo também apresenta estrutura espiral, embora seja bem menos massiva que as outras duas. Os demais componentes, são principalmente galáxias anãs irregulares ou elípticas.

A interação gravitacional entre as duas maiores galáxias do Grupo Local as colocaram em rota de colisão, a qual deverá acontecer em pelo menos quatro bilhões de anos. Simulações mostram que Andrômeda e a Via Láctea se fundirão, num processo que levará mais dois bilhões de anos, até formarem uma gigantesca galáxia elíptica. Contudo, dificilmente ocorrerão colisões entre estrelas, devido à imensa separação entre elas, apesar de suas órbitas serem radicalmente alteradas. Posteriormente, a Galáxia do Triângulo também deverá colidir com a galáxia elíptica resultante.

Movimento

A nossa galáxia, assim como o Grupo Local, apresentam um movimento próprio influenciado pelos aglomerados de galáxias próximos. O fluxo de Hubble, que descreve o movimento das galáxias devido somente à expansão do Universo, é utilizado como referencial inercial do movimento galáctico. Galáxias como a Via Láctea apresentam velocidades peculiares em relação a este referencial. A velocidade e a direção do movimento da galáxia podem ser detectados a partir da ocorrência da anisotropia dipolar, causada pelo efeito Doppler, em que a radiação que está na direção da velocidade da galáxia sofre desvio para o azul, enquanto a radiação proveniente da direção oposta sofre desvio para o vermelho. Um observador estacionário em relação ao fluxo de Hubble, por sua vez, não detecta nenhum desvio na radiação incidente.A galáxia tende a se aproximar do centro de massa do Grupo Local, o que levará a colisão com Andrômeda.O grupo Local como um todo, por sua vez, move-se a cerca de 620 quilômetros por segundo em relação à radiação cósmica de fundo, na direção de logitude 276° e latitude de 30° em coordenadas galácticas, na direção da constelação de Hidra. A radiação cósmica de fundo foi mapeada a partir dos satélites COBE e WMAP.O aglomerado de galáxias de Virgem é responsável por parte da velocidade do Grupo Local, mas a maior parte provém da ação gravitacional do Grande Atrator, que possivelmente é causada pela influência do Superaglomerado Hidra-Centauro em conjunto com outros superaglomerados de galáxias. Nossa galáxia situa-se na borda de um grande Vazio Local, uma região com ausência de galáxias da qual o Grupo Local está se afastando.

Aparência

A partir da posição do Sistema Solar,a Via Láctea forma uma faixa brilhante que se estende por 360° ao redor da esfera celeste. De fato a maior parte das estrelas não pode ser definida visualmente, de forma que suas luzes são combinadas em uma luminosidade difusa, cuja distribuição é extremamente irregular. O plano galáctico é inclinado cerca de 60° em relação à eclíptica, fazendo com que a galáxia cruze tanto constelações do hemisfério celeste norte quanto do sul e que, portanto, possa ser vista de qualquer lugar do mundo.O polo galáctico norte localiza-se na constelação de Coma Berenices, enquanto o polo galáctico sul encontra-se na constelação de Escultor.

O centro da galáxia localiza-se na constelação de Sagitário, onde estão presentes as regiões visualmente mais brilhantes, como a Nuvem Estelar de Sagitário e partes do bulbo central, além de muitos aglomerados globulares e a Nebulosa da Lagoa visíveis a olho nu.Esta região apresenta, contudo, uma proeminente faixa escura distribuída de forma irregular. A partir desta região em direção às constelações de Águia e Cisne a banda obscurecida continua evidente, dividindo a faixa da galáxia em duas. Seguindo sua trajetória até a constelação de Cassiopeia, a galáxia se mostra como uma faixa simples e menos proeminente, cuja largura varia irregularmente. Esta faixa continua pelas constelações de Gêmeos, Órion, Monoceros e Cão Maior igualmente pobre em brilho, embora alguns aglomerados abertos, como M41 e M47 sejam visíveis a olho nu. Contudo, a partir das constelações de Vela, Carina (onde situa-se a Nebulosa de Eta Carinae), Cruzeiro do Sul, Centauro, Norma e Escorpião até o retorno a Sagitário, a galáxia volta a exibir um brilho intenso. A faixa brilhante contínua, mas irregular, é recortada por regiões obscurecidas por nuvens moleculares, como a Nebulosa do Saco de Carvão.

Por ser um objeto difuso e com baixa luminosidade superficial, a observação da Via Láctea é fortemente afetada pela poluição luminosa. Em áreas extremamente escuras, onde hão haja nenhum tipo de poluição luminosa (onde a magnitude limite chega a +6.0 aproximadamente), as estruturas da galáxia são facilmente perceptíveis, sendo seu brilho tão intenso a ponto de projetar sombra. Em áreas rurais, mesmo com o leve brilho ocasionado pelas luzes urbanas, a Via Láctea se mostra proeminente no céu. Em áreas suburbanas (onde a magnitude limite é de +4.5), a iluminação noturna faz com que a Via Láctea se torne pouco estruturada e fortemente obscurecida, mesmo quando em direção ao zênite. No centro das cidades é praticamente impossível observar a galáxia.

Visões culturais

A faixa brilhante e sinuosa da Via Láctea instiga a curiosidade humana desde a antiguidade. Pelo fato de se estender por todo o céu, a galáxia foi tida como análoga a rios, como no caso de lendas antigos egípcias, em que era comparada ao Rio Nilo, contudo corria nas áreas habitadas pelos espíritos. Na China e no Japão, a galáxia também recebe a denominação de Tien Ho (Rio celestial ou rio prateado), enquanto que, para os hindus, a Via Láctea representa o "curso do Ganges celestial". Há referências em outras culturas da Via Láctea como sendo um rio que conduziria à imortalidade.

Segundo a mitologia grega, Héracles, filho de Zeus, foi levado para se alimentar no seio de Hera, sua esposa, e dessa forma obteria a imortalidade. Entretanto, ao saber que Héracles era, na verdade, filho de Zeus com uma concubina mortal, imediatamente empurrou o menino, e seu leite derramou por todo o céu, formando uma faixa esbranquiçada. Possivelmente, o nome da galáxia surgiu a partir desta lenda, com base no surgimento da expressão do grego helenístico galaxias kuklos (γαλαξίας κύκλος ou "ciclo leitoso") que, traduzido para o latim, veio a se tornar "Via Láctea". Desta mesma expressão surgiu a palavra "galáxia", cuja raiz significa simplesmente "leite".

Em culturas indígenas, o formato irregular da faixa brilhante era assimilada como sendo figuras animais. Para os índios desanos, por exemplo, a Via Láctea forma a figura de duas cobras que se enrolam, enquanto para os quíchuas as porções escuras da galáxia representavam diversos animais.Na mitologia dos índios tupi-guarani, a Via Láctea é na verdade o Caminho das Antas (Tapi`i Rape). Parte desta faixa representa a plumagem da Ema, uma grande constelação que se estende entre as constelações ocidentais do Cruzeiro do Sul e Escorpião.

De fato a maior parte das lendas concebe a galáxia como sendo um caminho ou uma estrada. Segundo algumas crenças de povos esquimós, dentre outros, a faixa brilhante forma o "caminho das cinzas". Em culturas africanas esta crença provém da lenda de uma menina que marcou seu caminho para que seu povo pudesse encontrá-la. Para os cheyennes e outras tribos das grandes planícies dos Estados Unidos, a Via Láctea é a trilha de poeira deixada pela corrida entre o búfalo e o cavalo.

Os turcos conheciam a galáxia como Hadjiler Juli ou a "estrada dos peregrinos". Na Idade Média na Europa, recebia a denominação de "estrada de Roma", em alusão à sede da Igreja Católica, através da qual se conseguiria o acesso ao paraíso.Na península Ibérica, a Via Láctea é conhecida também como Caminho ou Estrada de Santiago. São Tiago, um dos apóstolos de Jesus, foi para o norte da atual Espanha para evangelizar. Muito depois de sua morte, começaram peregrinações para o local onde hoje fica a cidade de Santiago de Compostela, a partir de relatos de milagres e aparições. Os peregrinos, à noite, utilizavam a Via Láctea como guia para chegarem à cidade, razão pela qual a galáxia também recebe estas denominações.

Mais recentemente, a partir do advento da ficção científica, a galáxia passou a ser o local de viagens interestelares, em que geralmente humanos são capazes de chegar a outros planetas e conhecer outras formas de vida extraterrestre. Isaac Asimov em sua trilogia Fundação criou um extenso Império Galáctico que se estende por incontáveis planetas.Na série Star Trek, a galáxia é povoada por raças alienígenas que possuem domínios em diversas regiões da galáxia.

História da observação

A investigação científica sobre a natureza da Via Láctea data desde a antiguidade. Em seu livro Meteorologica, Aristóteles argumenta que a faixa brilhante era originada de exalações ferozes de estrelas grandes, numerosas e próximas entre si, que acontecia nas partes mais altas da atmosfera.Muitos outros astrônomos, por sua vez, imaginavam a Via Láctea como sendo o resultado do brilho de muitas estrelas distantes e próximas entre si, de forma que sua luz aparecia de forma difusa. Avempace, por exemplo, afirma que as estrelas que quase se tocam, formam uma "imagem contínua", o que seria o resultado da refração da atmosfera.

Galileu Galilei, ao apontar seu telescópio para a Via Láctea no ano de 1609, observou sua verdadeira natureza e escreveu em seu livro Sidereus Nuncius que "a galáxia de fato não é nada além de um amontoado de estrelas que formam aglomerados. Para qualquer direção que se aponte o telescópio, uma vasta quantidade de estrelas imediatamente se mostra, muitas delas bastante brilhantes, enquanto o número de estrelas pequenas é incalculável."


Posteriormente, percebeu-se que o Sol estava dentro do grande grupo de estrelas que forma a Via Láctea. William Herschel e sua irmã, nos anos de 1780, foram um dos primeiros a tentar determinar a posição do Sistema Solar na galáxia a partir da densidade de estrelas observada. Concluíram, então, que a galáxia teria forma achatada e que o Sol estaria próximo a sua região central. Jacobus Kapteyn, no fim do século XX, chegara a conclusão semelhante ao constatar que a densidade de estrelas decrescia conforme a distância ao Sol. Estas constatações eram vistas com ceticismo pela comunidade científica da época, e de fato estavam erradas por terem a premissa de que nada bloquearia a luz das estrelas e que, portanto, todas podiam ser vistas, pois não sabiam da existência das nuvens moleculares.

No ano de 1917, Harlow Shapley conseguiu medir a distância de dezenas de aglomerados globulares, utilizado algumas estrelas variáveis presentes em cada um dos aglomerados, e percebeu que estes pareciam se concentrar em uma certa região na constelação de Sagitário, concluindo que lá deveria estar o centro da galáxia. Na mesma época, houve um grande debate entre Sharpley e Heber Curtis sobre o tamanho da galáxia e do Universo. Sharpley havia deduzido o diâmetro da Via Láctea como sendo mais de trezentos mil anos-luz, sendo que a Nebulosa de Andrômeda e as Nuvens de Magalhães faziam parte deste grande sistema estelar. Curtis, por outro lado, argumentava que Andrômeda e outras estruturas espirais estariam muito mais distantes e separadas da Via Láctea, formando "universos-ilha".

A dúvida foi sanada quando, em 1924, Edwin Hubble por meio de técnicas refinadas de observação, conseguiu analisar estrelas individuais da nebulosa de Andrômeda e assim calcular sua distância. Então, comprovou-se que se tratava de um sistema composto por bilhões de estrelas, semelhante à Via Láctea, localizado a mais de duzentos milhões de anos-luz. Desde então tornou-se comum o uso do termo "galáxia" para designar tais objetos celestes. Cinco anos depois, Hubble também viria a concluir que as outras galáxias estão se afastando de nós, o que é atribuído à expansão do Universo.

Na mesma década, Jan Oort e Bertil Lindblad observaram que o Sol não ocupa uma posição fixa na galáxia, mas orbita ao redor de seu centro, deduzindo a partir do movimento próprio das estrelas nas proximidades do Sistema Solar. Embora algumas dessas estrelas apresentem um movimento irregular, a análise de uma grande quantidade permitiu concluir que se moviam em uma mesma direção, assim como o Sol, ao redor do centro da Via Láctea.

Somente na década de 1930 percebeu-se a presença da poeira interestelar, responsável por obstruir nossa visão de várias regiões da galáxia. Desta forma, justificou-se os erros cometidos anteriormente na determinação do tamanho da galáxia e de sua estrutura. Durante a Segunda Guerra Mundial, o astrônomo Walter Baade notou que os componentes estelares da galáxia não se diferenciavam somente pela sua localização, mas também pela diferença de idades e sua ligação com a composição química. Então, dividiu as estrelas da galáxia em dois grupos, o primeiro (população I) formado por estrelas mais jovens e ricas em metais que formam o disco e o segundo (população II) composto por estrelas antigas e pobres em metais, localizadas principalmente no núcleo e no halo.

William Wilson Morgan, em um estudo publicado em 1951, mediu a posição de muitas estrelas de classes espectrais O e B, associadas a nebulosas, e percebeu sua distribuição peculiar, revelando os braços espirais da Via Láctea. Técnicas de radioastronomia criadas no fim da década permitiram encontrar as distâncias das nuvens moleculares, que igualmente evidenciaram a estrutura espiral da galáxia.

Desde então, a observação da Via Láctea têm sido feita não só em luz visível, mas em diversos comprimentos de onda do espectro eletromagnético, desde o infravermelho até raios X e gama, que permitem sondar as estruturas além das faixas de poeira até seus confins.Em 1989, a fim de mapear a posição de mais de cem mil estrelas de toda a galáxia, foi colocado em órbita o satélite Hipparcos, cujos dados deram origem a um extenso e preciso catálogo estelar.Já no fim de 2013, iniciou-se a missão Gaia, com o objetivo de mapear com precisão a posição de cerca de um bilhão de estrelas da Via Láctea. A partir de técnicas de astrometria, vão ser determinadas o movimento próprio das estrelas, fornecendo dados sem precedentes sobre a dinâmica da galáxia. Pretende-se ainda, durante os cinco anos previstos da missão, mapear outros objetos, como corpos menores do Sistema Solar, planetas extrassolares, protoestrelas e buracos negros tanto na Via Láctea quanto em outras galáxias distantes.

Galáxia



Uma galáxia é um grande sistema, gravitacionalmente ligado, que consiste de estrelas, remanescentes de estrelas, um meio interestelar de gás e poeira e um importante mas insuficientemente conhecido componente apelidado de matéria escura.A palavra “galáxia” deriva do grego ‘’galaxias’’ (γαλαξίας), literalmente "leitoso", numa referência à nossa galáxia, a Via Láctea. Exemplos de galáxias variam desde as anãs, com até 10 milhões (107) de estrelas,até gigantes com 100 trilhões (1014) de estrelas,todas orbitando o centro de massa da galáxia.

As galáxias contêm quantidades variadas de sistemas e aglomerados estelares e de tipos de nuvens interestelares. Entre esses objetos existe um meio interestelar esparso de gás, poeira e raios cósmicos. A matéria escura parece corresponder a cerca de 90% da massa da maioria das galáxias. Dados observacionais sugerem que podem existir buracos negros supermaciços no centro de muitas, se não todas as galáxias. Acredita-se que eles sejam o impulsionador principal dos núcleos galácticos ativos – região compacta no centro de algumas galáxias que tem uma luminosidade muito maior do que a comum. A Via Láctea parece possuir pelo menos um desses objetos.

As galáxias foram historicamente categorizadas segundo sua forma aparente, usualmente referida como sua morfologia visual. Uma forma comum é a galáxia elíptica,que tem um perfil de luminosidade em forma de elipse. Galáxias espirais têm forma de disco, com braços curvos. Aquelas com formas irregulares ou não usuais são conhecidas como galáxias irregulares e se originam tipicamente da disrupção pela atração gravitacional de galáxias vizinhas. Essas interações entre galáxias, que podem ao final resultar na sua junção, às vezes induzem o aumento significativo de incidentes de formação estelar, levando às galáxias starburst. Galáxias menores que não têm uma estrutura coerente são referidas como galáxias irregulares.


NGC 4414, uma galáxia espiral típica na constelação Coma Berenices, tem 55 mil anos-luz de diâmetro e está a aproximadamente 60 milhões de anos-luz da Terra.


Existem provavelmente mais de 170 bilhões de galáxias no universo observável.Em sua maioria elas possuem de 1 000 a 100 000 parsecs de diâmetro e são separadas por distâncias da ordem de milhões de parsecs.O espaço intergaláctico é preenchido com um gás tênue com uma densidade média de menos de um átomo por metro cúbico. A maior parte das galáxias está organizada numa hierarquia de associações conhecidas como grupos e aglomerados, os quais, por sua vez, formam superaglomerados maiores. Numa escala maior, essas associações são geralmente organizadas em filamentos e muralhas, que são circundados por vazios imensos.

Etimologia

A palavra galáxia deriva do termo grego para a nossa galáxia, galaxias (γαλαξίας, "leitoso") ou kyklos ("círculo") galaktikos ("leitoso")’’,pela sua aparência no céu. Na mitologia grega, Zeus coloca o filho que havia gerado com uma mulher mortal, o pequeno Hércules, no seio de Hera enquanto ela dorme, de modo que o bebê, ao tomar o leite divino, também se torne imortal. Hera acorda durante a amamentação e percebe que está alimentando um bebê desconhecido; ela empurra o bebê e um jato do seu leite espirra no céu noturno, produzindo a tênue faixa de luz conhecida como Via Láctea.

Quando William Herschel criou o seu catálogo de objetos celestes em 1786, ele usou o termo nebulosa espiral para alguns objetos, como M31 (Galáxia de Andrômeda). Eles seriam mais tarde reconhecidos como imensos aglomerados de estrelas, quando a verdadeira distância desses objetos começou a ser avaliada, e eles passaram a ser chamados universos insulares. Entretanto, a palavra Universo era entendida como a totalidade da existência, o que fez esta expressão cair em desuso, preferindo-se usar o termo galáxia.

História da observação

Via Láctea

O filósofo grego Demócrito de Abdera (450 – 370 a.C) propôs que a faixa brilhante no céu noturno, conhecida como a Via Láctea, deveria consistir de estrelas distantes.Aristóteles (384 – 322 a.C), entretanto, acreditava que a Via Láctea fosse causada pela “ignição da abrasadora exalação de algumas estrelas que eram grandes, numerosas e próximas” e que “a ignição ocorre na parte superior da atmosfera, na região do mundo que está continuamente com os movimentos celestiais.”O filósofo neoplatônico Olimpiodoro, o Jovem (c. 495 – 570 a.C) era cientificamente crítico desta visão, argumentando que se a Via Láctea fosse sublunar ela deveria parecer diferente em diferentes horas e lugares da Terra, e que teria paralaxe, o que ela não tem. Em sua visão, a Via Láctea era celestial. Esta ideia seria influente mais tarde no mundo islâmico.


A forma da Via Láctea, como deduzido pelas contagens de estrelas por William Herschel em 1785; assumiu-se que o Sistema Solar estava próximo ao centro.


De acordo com Mohani Mohamed, o astrônomo árabe Alhazen (965 – 1037) fez a primeira tentativa de observar e medir o paralaxe da Via Láctea, e ele “determinou que como a Via Láctea não tinha paralaxe, ela estava muito distante da Terra e não pertencia à atmosfera.”O astrônomo persa Abu Rayhan al-Biruni (973 – 1048) propôs que a Via Láctea era “uma coleção de incontáveis fragmentos com a natureza de estrelas turvas.” O astrônomo andaluz Ibn Bajjah (Avempace, m. 1138) propôs que a Via Láctea era feita de muitas estrelas que quase se tocavam umas nas outras e pareciam uma imagem contínua devido ao efeito da refração no material sublunar,citando sua observação da conjunção de Júpiter e Marte como uma evidência desta ocorrência quando dois objetos estão próximos.No século XIV, o sírio Ibn Qayyim Al-Jawziyya propôs que a Via Láctea era “uma miríade de pequenas estrelas empacotadas juntas na esfera das estrelas fixas.”

A confirmação de que Via Láctea consiste de muitas estrelas veio em 1610, quando Galileu Galilei a observou com uma luneta e descobriu que ela era composta de um enorme número de estrelas fracas.Em 1750, Thomas Wright, na sua obra Uma teoria original ou nova hipótese sobre o Universo, especulou (corretamente) que a galáxia deveria ser um corpo em rotação de um grande número de estrelas mantidas juntas por forças gravitacionais, de forma similar ao Sistema Solar, mas numa escala muito maior. O disco de estrelas resultante pode ser visto como uma faixa no céu devido a nossa perspectiva de dentro do disco.

A primeira tentativa de descrever a forma da Via Láctea e a posição do Sol nela foi realizada por William Herschel em 1785, pela contagem cuidadosa do número de estrelas em diferentes regiões do céu. Ele construiu um diagrama da forma da galáxia, com o Sistema Solar próximo do centro.Utilizando uma abordagem refinada, Jacobus Kapteyn chegou em 1920 à figura de uma pequena (diâmetro de cerca de 15 mil parsecs) galáxia elipsoide, com o Sol próximo do centro. Um método diferente por Harlow Shapley, baseado na catalogação de aglomerados globulares, levou a um desenho radicalmente diferente: um disco plano com diâmetro de aproximadamente 70 mil parsecs e o Sol distante do centro. As duas análises falharam por não levarem em consideração a absorção da luz pela poeira interestelar presente no plano galáctico, mas depois que Robert Julius Trumpler quantificou este efeito em 1930 pelo estudo de aglomerados abertos, surgiu o atual desenho da Via Láctea.


Mosaico da Via Láctea em luz visível, onde nota-se as regiões mais brilhantes e a faixa de poeira.


Distinção de outras galáxias

No século X, o astrônomo persa Abd al-Rahman al-Sufi (conhecido no ocidente como Azophi) fez a mais antiga observação registrada da Galáxia de Andrômeda, descrevendo-a como uma “pequena nuvem”.Esta galáxia foi redescoberta independentemente por Simon Marius em 1612. Al-Sufi também identificou a Grande Nuvem de Magalhães, que é visível no Iêmen, embora não em Isfahan, a cidade da Pérsia em que ele vivia; esta galáxia não foi vista por europeus até a viagem de Fernão de Magalhães no século XVI.Estas são algumas das poucas galáxias que podem ser observadas da Terra sem o auxílio de instrumentos ópticos. Al-Sufi publicou seus achados no seu Livro de Estrelas Fixas em 964.

No final do século XVIII, Charles Messier compilou um catálogo contendo as 109 mais brilhantes nebulosas (objetos celestes com uma aparência de nuvem), seguido mais tarde por um catálogo maior de 5 000 nebulosas reunidas por William Herschel.Em 1845, Lord Rosse construiu um novo telescópio e foi capaz de distinguir entre galáxias elípticas e espirais. Ele também conseguiu distinguir pontos individuais em algumas dessas nebulosas, dando crédito à conjectura anterior de Kant.

Em 1912, Vesto Slipher fez estudos espectrográficos das nebulosas espirais mais brilhantes para determinar se elas eram compostas de substâncias químicas que seriam esperadas em um sistema planetário. Entretanto, Slipher descobriu que as nebulosas espirais tinham altos desvios para o vermelho, indicando que elas estavam se afastando a velocidades maiores do que a velocidade de escape da Via Láctea. Logo, elas não estavam gravitacionalmente ligadas à Via Láctea e provavelmente não faziam parte da galáxia.


Fotografia da “Grande Nebulosa de Andrômeda” de 1899, mais tarde identificada como a Galáxia de Andrômeda.


Em 1917, Heber Curtis tinha observado uma nova, a S Andromedae, dentro da “Grande Nebulosa de Andrômeda” (como era conhecida a Galáxia de Andrômeda, objeto Messier M31). Pesquisando o registro fotográfico, ele encontrou mais 11 novas. Curtis notou que essas novas eram, em média, 10 magnitudes mais fracas do que as que ocorriam em nossa galáxia. Como resultado, ele foi capaz de definir uma distância estimada de 150 000 parsecs. Ele se tornou um proponente da hipótese chamada “universos insulares”, que indica que as nebulosas espirais são na verdade galáxias independentes.

Em 1920, teve lugar o chamado Grande Debate entre Harlow Shapley e Heber Curtis, a respeito da natureza da Via Láctea, as nebulosas espirais e as dimensões do Universo. Para apoiar sua tese de que a Grande Nebulosa de Andrômeda era uma galáxia externa, Curtis apontou a aparição de faixas escuras lembrando as nuvens de poeira da Via Láctea, além do significativo desvio Doppler.

A matéria foi resolvida conclusivamente no início dos anos 1920. Em 1922, o astrônomo Ernst Öpik fez uma determinação de distância que apoiava a teoria de que a Nebulosa de Andrômeda é realmente um objeto extragaláctico distante.Usando o novo telescópio do Observatório Monte Wilson de 100 polegadas, Edwin Hubble foi capaz de definir as partes externas de algumas nebulosas espirais como coleções de estrelas individuais e identificou algumas variáveis Cefeidas, permitindo a ele estimar a distância para a nebulosa: elas estavam distantes demais para ser parte da Via Láctea.Em 1936, Hubble criou um sistema de classificação para galáxias que é usado até hoje, a sequência de Hubble.

Pesquisa moderna

Em 1944, Hendrik van de Hulst predisse uma radiação de micro-ondas num comprimento de onda de 21 cm resultante de gás hidrogênio atômico interestelar;esta radiação foi observada em 1951. A radiação permitiu grande melhoria do estudo da Via Láctea, pois ela não é afetada pela absorção de poeira e o seu desvio Doppler pode ser usado para mapear o movimento do gás na galáxia. Essas observações levaram à postulação de uma estrutura de barra no centro da galáxia.Com o desenvolvimento dos radiotelescópios, o gás hidrogênio pode ser pesquisado também em outras galáxias.


A segunda galáxia mais distante: UDFy-38135539.


Nos anos 1970, no estudo de Vera Rubin sobre a velocidade de rotação do gás em galáxias, descobriu-se que a massa total visível (das estrelas e do gás) não é compatível com a velocidade do gás em rotação. Acredita-se que este problema da rotação das galáxias seja explicado pela presença de grandes quantidades de matéria escura invisível.

A partir dos anos 1990, o Telescópio Espacial Hubble permitiu o incremento das observações. Entre outras coisas, ele estabeleceu que a matéria escura em nossa galáxia não poderia consistir somente de estrelas pequenas e fracas.O Campo Profundo Observável do Hubble (Hubble Deep Field), uma exposição extremamente longa de uma parte do céu relativamente vazia, forneceu evidência de que há cerca de 125 bilhões de galáxias no universo.O desenvolvimento da tecnologia para detecção do espectro invisível para o homem (radiotelescópios, câmeras infravermelhas e telescópios de raios-X) permitiu a detecção de outras galáxias que não são detectáveis pelo Hubble. Particularmente, pesquisas na região do céu bloqueada pela Via Láctea revelaram certo número de novas galáxias.

Tipos e morfologias

Existem três tipos principais de galáxias: elípticas, espirais e irregulares. Uma descrição ligeiramente mais extensa dos tipos de galáxias baseada em sua aparência é dada pela classificação de Hubble. Como esta classificação é totalmente baseada no tipo morfológico visual, ela pode desconsiderar algumas características importantes das galáxias, como a taxa de formação de estrelas (em galáxias starburst) e a atividade no núcleo (em galáxias ativas).


Tipos de galáxias de acordo com a classificação de Hubble. Um “E” indica uma galáxia elíptica, um “S” é uma espiral e “SB” é uma galáxia espiral barrada.


Elípticas

O sistema de classificação de Hubble identifica as galáxias elípticas com base em sua elipticidade, variando de E0, quase esféricas, até E7, que são bastante alongadas. Essas galáxias têm um perfil elipsoidal, o que lhes confere uma aparência elíptica independentemente do ângulo de visão. A sua aparência mostra pouca estrutura e elas têm tipicamente pouca matéria interestelar. Consequentemente, essas galáxias também possuem uma porção pequena de aglomerados abertos e uma taxa reduzida de formação de novas estrelas. Em vez disso, elas são geralmente dominadas por estrelas mais velhas e evoluídas, que orbitam o centro comum de gravidade em direções aleatórias. Neste sentido, elas têm alguma similaridade com os muito menores aglomerados globulares.

As maiores galáxias são elípticas gigantes. Acredita-se que muitas galáxias elípticas se formam devido à interação de galáxias, resultando em colisões e junções. Elas podem crescer a tamanhos enormes (comparados com os das galáxias espirais, por exemplo), e galáxias elípticas gigantes são frequentemente encontradas perto do núcleo de grandes aglomerados de galáxias.Galáxias starburst são o resultado de uma colisão galáctica, que pode levar à formação de uma galáxia elíptica.

Espirais

Galáxias espirais consistem de um disco giratório de estrelas e meio interestelar, juntamente com um bulbo central destacado, composto geralmente de estrelas mais velhas. Estendendo-se para fora deste bulbo existem braços relativamente brilhantes. Na classificação de Hubble, as galáxias espirais são indicadas como tipo S, seguido por uma letra (a, b ou c) que indica o grau de aperto dos braços espirais e o tamanho do bulbo central. Uma galáxia Sa tem braços apertados e pouco definidos, com uma região de núcleo relativamente grande. No outro extremo, uma galáxia Sc tem braços abertos e bem definidos e uma pequena região de núcleo.Uma galáxia com braços pouco definidos é às vezes chamada de galáxia espiral floculenta, em contraste com as galáxias espirais de grande desenho, que têm braços espirais proeminentes e bem definidos.


A Galáxia do Rodamoinho (à esquerda), um exemplo de galáxia espiral não barrada.


Em galáxias espirais, os braços têm a forma aproximada de espirais logarítmicas, um padrão que pode ser teoricamente demonstrado como resultado de uma perturbação em uma massa de estrelas girando uniformemente. Como as estrelas, os braços espirais giram em torno do centro da galáxia, mas eles o fazem com velocidade angular constante. Acredita-se que os braços espirais sejam áreas de matéria de alta densidade, ou "ondas de densidade".À medida que as estrelas se movem através de um braço, a velocidade espacial de cada sistema estelar é modificada pela força gravitacional da maior densidade e a velocidade retorna ao normal depois que a estrela sai pelo outro lado do braço. Este efeito é similar a uma “onda” de desacelerações movendo-se ao longo de uma rodovia cheia de carros em movimento. Os braços são visíveis porque a alta densidade facilita a formação de estrelas, portanto eles abrigam muitas estrelas jovens e brilhantes.

A maioria das galáxias espirais possui uma faixa linear de estrelas em forma de barra que se estende para fora de cada lado do núcleo e depois se junta à estrutura do braço espiral.Na classificação de Hubble, elas são designadas por um SB, seguido de uma letra minúscula (a, b ou c) que indica a forma do braço espiral, da mesma forma como são categorizadas as galáxias espirais normais. Acredita-se que as barras sejam estruturas temporárias que podem ocorrer como resultado de uma onda de densidade irradiando-se para fora do núcleo, ou devido a uma interação de maré com outra galáxia.Muitas galáxias espirais barradas são ativas, possivelmente como resultado de gás sendo canalizado para o núcleo ao longo dos braços.


NGC 1300, um exemplo de galáxia espiral barrada.


A Via Láctea é uma grande galáxia espiral barrada em forma de disco,com cerca de 30 mil parsecs de diâmetro e mil parsecs de espessura. Ela contém cerca de 200 bilhões de estrelas.e tem uma massa total de 600 bilhões de vezes a massa do Sol.

Outras morfologias


Objeto de Hoag, um exemplo de uma galáxia em anel.


Galáxias peculiares são formações galácticas que desenvolvem propriedades não usuais devido a interações de maré com outras galáxias. Um exemplo disto é a galáxia em anel, que possui uma estrutura de estrelas e meio interestelar em forma de anel, circundando um núcleo vazio. Acredita-se que uma galáxia em anel acontece quando uma galáxia pequena passa pelo núcleo de uma galáxia espiral.Um evento desses pode ter afetado a Galáxia de Andrômeda, uma vez que ela apresenta uma estrutura multi-anel quando observada pela radiação infravermelha.Uma galáxia lenticular é uma forma intermediária que possui propriedades tanto de galáxias elípticas quanto de espirais. Elas são categorizadas como tipo S0 na classificação de Hubble e possuem braços espirais mal definidos, com um halo elíptico de estrelas.Galáxias lenticulares barradas são denominadas Sb0 na classificação de Hubble.


NGC 5866, um exemplo de uma galáxia lenticular.


Além das classificações mencionadas acima, existe um número de galáxias que não podem ser prontamente classificadas na morfologia espiral ou elíptica. Essas são classificadas como galáxias irregulares. Uma galáxia Irr-I possui alguma estrutura, mas não se alinha adequadamente com a classificação de Hubble. Galáxias Irr-II não possuem qualquer estrutura que se pareça com a classificação de Hubble e podem ter sido rompidas. Exemplos próximos de galáxias irregulares (anãs) são as Nuvens de Magalhães.

Anãs

Apesar da proeminência das grandes galáxias elípticas e espirais, a maioria das galáxias no universo parecem ser anãs. Elas são relativamente pequenas quando comparadas com outras formações galácticas, tendo cerca de um centésimo do tamanho da Via Láctea e contendo apenas alguns bilhões de estrelas. Galáxias anãs ultra-compactas recentemente descobertas têm apenas 100 parsecs de largura.

Muitas galáxias anãs podem orbitar uma galáxia maior; a Via Láctea tem pelo menos uma dúzia desses satélites, estimando-se que haja de 300 a 500 ainda desconhecidos.Galáxias anãs podem ser classificadas também como elípticas, espirais ou irregulares. Como as pequenas anãs elípticas têm pouca semelhança com as grandes elípticas, elas são frequentemente chamadas galáxias anãs esferoidais.

Um estudo de 27 vizinhas da Via Láctea descobriu que em todas as galáxias anãs, a massa central é de aproximadamente 10 milhões de massas solares, independentemente de se a galáxia possui milhares ou milhões de estrelas. Isto levou à sugestão de que as galáxias são grandemente formadas por matéria escura e que o tamanho mínimo pode indicar uma forma de matéria escura morna, incapaz de coalescência gravitacional numa escala menor.

Dinâmica e atividades incomuns

Interação

A separação média entre galáxias dentro de um aglomerado é de pouco mais de uma ordem de grandeza maior do que o seu diâmetro. Logo, as interações entre essas galáxias são relativamente frequentes e têm um papel importante em sua evolução. Pequenas distâncias entre galáxias resultam em deformações devido a interações de maré e podem causar trocas de gás e poeira.

Colisões ocorrem quando duas galáxias passam diretamente uma através da outra e têm suficiente momento relativo para não se juntarem. As estrelas dentro dessas galáxias que interagem tipicamente passam direto sem colidirem, entretanto o gás e a poeira dentro das duas formas vão interagir. Isto pode aumentar a taxa de formação de estrelas, na medida em que o meio interestelar é rompido e comprimido. Uma colisão pode distorcer severamente a forma de uma ou de ambas as galáxias, formando barras, anéis ou estruturas similares a caudas.


Colisão de galáxias no Quinteto de Stephan


No extremo das interações estão as junções de galáxias. Neste caso, o momento relativo das duas galáxias é insuficiente para permitir que passem uma dentro da outra. Em vez disso, elas gradualmente se juntam para formar uma única galáxia maior. As junções podem resultar em mudanças significativas da morfologia, se comparada às das galáxias originais. Quando uma das galáxias tem massa muito maior, entretanto, o resultado é conhecido como canibalismo. Neste caso, a galáxia maior permanece relativamente inalterada pela junção, enquanto a menor é rasgada em pedaços. A Via Láctea está atualmente no processo de canibalizar a Galáxia Anã Elíptica de Sagitário e a Galáxia Anã do Cão Maior.

Starburst

As estrelas são criadas no interior de galáxias a partir de uma reserva de gás frio que se transforma em nuvens moleculares gigantes. Observou-se que estrelas se formam numa taxa excepcional em algumas galáxias, as quais são chamadas starburst. Se elas continuassem nesse comportamento, entretanto, elas consumiriam sua reserva de gás em um tempo menor do que o tempo de vida de uma galáxia. Logo, a atividade de nascimento de estrelas dura normalmente cerca de dez milhões de anos, um período relativamente breve na história de uma galáxia. As galáxias starburst eram mais comuns no início da história do universo e estima-se que, atualmente, ainda contribuem com 15% da taxa total de produção de estrelas.

As galáxias starburst se caracterizam pela concentração de gás e poeira e pela aparição de novas estrelas, inclusive estrelas massivas que ionizam as nuvens circundantes, criando regiões HII.Essas estrelas massivas produzem supernovas, resultando em remanescentes em expansão que interagem fortemente com o gás circundante. Essas explosões provocam uma reação em cadeia de criação de estrelas que se espalha por toda a região gasosa. Somente quando o gás disponível foi quase todo consumido ou disperso a atividade de criação de estrelas chega ao fim.


M82, o arquétipo da galáxia starburst. Nessa galáxia, a taxa de formação de estrelas é 10 vezes maior que em galáxias normais.


A criação de estrelas está frequentemente associada com a junção ou interação de galáxias. Um exemplo típico de uma interação formadora de estrelas é M82, que passou por uma aproximação com a maior M81. Galáxias irregulares frequentemente exibem núcleos espaçados de atividade de formação de estrelas.

Núcleo ativo

Uma parte das galáxias observáveis são classificadas como ativas, isto é, uma significativa porção da produção de energia da galáxia é emitida por uma fonte que não são as estrelas, a poeira e o meio interestelar.

O modelo padrão para um núcleo galáctico ativo se baseia em um disco de acreção que se forma em torno de um buraco negro supermaciço na região do núcleo. A radiação de um núcleo galáctico ativo resulta da energia gravitacional da matéria do disco que cai no buraco negro.Em cerca de 10% desses objetos, um par diametralmente oposto de jatos de energia ejeta partículas do núcleo a velocidades próximas à velocidade da luz. O mecanismo de produção desses jatos ainda não é bem compreendido.


Um jato de partículas sendo emitido pelo núcleo da galáxia elíptica M87.

Galáxias ativas que emitem radiação de alta energia na forma de raios-X são classificadas como galáxias Seyfert ou quasares, dependendo da luminosidade. Acredita-se que os blazares sejam galáxias ativas com um jato relativístico apontado na direção da Terra. Uma radiogaláxia emite frequências de rádio a partir de jatos relativísticos. Um modelo unificado desses tipos de galáxias ativas explica suas diferenças baseado no ângulo de visão do observador.

Possivelmente associados a núcleos galácticos ativos (bem como a regiões de formação estelar) estão as regiões de linhas de emissão nuclear de baixa ionização (low ionization nuclear emission-line regions – LINERs). A emissão deste tipo de galáxia é dominada por elementos fracamente ionizados.Aproximadamente um terço das galáxias próximas são classificadas como contendo núcleos LINER.

Formação e evolução

Formação

Os modelos cosmológicos atuais do início do universo são baseados na teoria do Big Bang. Cerca de 300 mil anos depois deste evento, átomos de hidrogênio e hélio começaram a se formar, num evento chamado “recombinação”. Quase todo o hidrogênio era neutro (não ionizado) e rapidamente absorveu luz, e nenhuma estrela tinha se formado ainda. Como resultado, este período foi chamado de “Eras Escuras”. Foi a partir de flutuações de densidade (ou irregularidades anisotrópicas) nesta matéria primordial que as estruturas maiores começaram a aparecer. Como resultado, massas de matéria bariônica começaram a se condensar dentro de halos de matéria escura fria.Essas estruturas primordiais acabaram se tornando as galáxias que vemos hoje.


Impressão artística de uma galáxia jovem acretando material. Crédito Observatório Europeu do Sul/L. Calçada


A evidência para o início da aparição de galáxias foi encontrada em 2006, quando se descobriu que a galáxia IOK-1 tem um desvio para o vermelho incomumente alto de 6,96, correspondendo a apenas 750 milhões de anos depois do Big Bang, fazendo dela a mais distante e primordial galáxia já vista.Enquanto alguns cientistas argumentam que outros objetos (como Abell 1835 IR1916) têm maiores desvios para o vermelho (e, portanto, são vistos em um estágio anterior da evolução do Universo), a idade e composição da IOK-1 foram estabelecidas com maior confiabilidade. A existência dessas protogaláxias iniciais sugere que elas devem ter crescido nas chamadas Eras Escuras.

O processo detalhado pelo qual esta formação inicial de galáxias ocorreu é uma importante questão em aberto na astronomia. As teorias podem ser divididas em duas categorias: de cima para baixo e de baixo para cima. Nas teorias de cima para baixo (como o modelo de Eggen-Lynden-Bell-Sandage [ELS]), as protogaláxias se formam num colapso simultâneo de larga escala que dura cerca de cem milhões de anos.Nas teorias de baixo para cima (como o modelo de Searle-Zinn [SZ]), estruturas pequenas como os aglomerados globulares se formam primeiro, e depois um número de tais corpos acretam para formar uma galáxia maior.Uma vez que as protogaláxias começaram a se formar e contrair, as primeiras estrelas do halo (chamadas estrelas da População III) apareceram dentro delas. Estas eram compostas quase inteiramente de hidrogênio e hélio, e podem ter sido massivas. Se isto aconteceu, essas estrelas enormes consumiram rapidamente seu suprimento de combustível e se tornaram supernovas, liberando elementos pesados no meio interestelar.Esta primeira geração de estrelas reionizou o hidrogênio neutro circundante, criando bolhas de espaço em expansão, através das quais a luz poderia viajar facilmente.

Evolução

Um bilhão de anos após o início da formação de uma galáxia, as estruturas chaves começam a aparecer. Formam-se aglomerados globulares, o buraco negro supermaciço central e um bulbo galáctico de estrelas da População II, pobres em metal. A criação de um buraco negro supermaciço parece deter um papel relevante de regular ativamente o crescimento de galáxias, por limitar a quantidade total de matéria acrescentada.Durante este período inicial, as galáxias passam por um grande aumento de formação de estrelas.

Durante os dois bilhões de anos seguintes, a matéria acumulada se dispõe em um disco galáctico.Uma galáxia continua a absorver matéria proveniente de nuvens de alta velocidade e de galáxias anãs por toda a sua vida,que se constitui principalmente de hidrogênio e hélio. O ciclo de nascimento e morte estelar aumenta lentamente a abundância de elementos pesados, permitindo ao fim a formação de planetas.

A evolução das galáxias pode ser afetada significativamente por interações e colisões. Junções de galáxias foram comuns na época inicial, e a maioria das galáxias tinha uma morfologia peculiar.Tendo em vista as distâncias entre as estrelas, a grande maioria dos sistemas estelares em galáxias que colidem não é afetada. Entretanto, a remoção gravitacional do gás e poeira interestelares que formam os braços espirais produz uma longa cadeia de estrelas conhecida como caudas de maré. Exemplos dessas formações podem ser vistos em NGC 4676 e NGC 4038.


I Zwicky 18 (embaixo, à esquerda), parece uma galáxia recentemente formada.


Como exemplo de tais interações, a Via Láctea e a vizinha Galáxia de Andrômeda estão se movendo uma em direção à outra a cerca de 130 km/s e – dependendo dos movimentos laterais – as duas podem colidir dentro de cinco a seis bilhões de anos. Embora a Via Láctea nunca tenha colidido com uma galáxia tão grande quanto a de Andrômeda, há crescentes evidências de ela ter colidido no passado com galáxias anãs.

Interações de grande escala como esta são raras. À medida que o tempo passa, junções de sistemas do mesmo tamanho ficam menos comuns. A maioria das galáxias brilhantes permaneceu basicamente inalterada nos últimos bilhões de anos, e a taxa global de formação de estrelas provavelmente teve seu pico há aproximadamente dez bilhões de anos.

Tendências para o futuro

Atualmente, a maior parte da formação de estrelas ocorre em galáxias menores, onde o gás frio não está esgotado.Galáxias espirais, como a Via Láctea, só produzem novas gerações de estrelas enquanto têm nuvens moleculares densas de hidrogênio interestelar nos seus braços espirais.As galáxias elípticas já estão desprovidas deste gás, portanto não formam novas estrelas.O suprimento de material para formação de estrelas é finito; quando as estrelas tiverem convertido o estoque disponível de hidrogênio em elementos mais pesados, a formação de novas estrelas chegará ao fim.

Acredita-se que a atual era de formação de estrelas vai continuar por até cem bilhões de anos, e então a “era estelar” se concluirá depois de cerca de dez trilhões a cem trilhões de anos, quando as menores e mais longevas estrelas, as pequenas anãs vermelhas, começarem a morrer. Ao final da era estelar, as galáxias serão compostas por objetos compactos: anãs marrons, anãs brancas que estão se resfriando ou frias (“anãs negras”), estrelas de nêutrons e buracos negros. Ao final, como resultado do relaxamento gravitacional, todas as estrelas cairão nos buracos negros supermaciços ou serão arremessadas para o espaço intergaláctico, como resultado de colisões.

Estruturas de grande escala

Pesquisas nas profundezas do céu revelam que as galáxias são frequentemente encontradas em associações relativamente próximas com outras galáxias. São relativamente raras as galáxias solitárias que não tenham interagido significativamente com alguma outra galáxia de massa comparável no último bilhão de anos. Somente cerca de 5% das galáxias pesquisadas foram caracterizadas como verdadeiramente isoladas; entretanto, mesmo essas podem ter interagido ou mesmo se juntado com outras galáxias no passado, e podem ainda ser orbitadas por galáxias satélites menores. Galáxias isoladas podem produzir estrelas a uma taxa mais alta que o normal, pois o seu gás não é removido por outras galáxias próximas.

Em escala maior, o universo está continuamente se expandindo, resultando no aumento médio da separação entre galáxias individuais . Associações de galáxias podem superar esta expansão em escala local por meio da sua atração gravitacional mútua. Essas associações se formaram cedo no universo, quando pedaços de matéria escura forçaram a aproximação das suas respectivas galáxias. Mais tarde, grupos vizinhos se juntaram para formar aglomerados em escala maior. Este processo de junção, assim como o influxo de gás, aquece o gás intergaláctico dentro do aglomerado a temperaturas muito altas, atingindo 30–100 megakelvins.Entre 70 e 80% da massa dos aglomerados está na forma de matéria escura, enquanto 10 a 30% consiste deste gás aquecido e o pequeno percentual remanescente está na forma de galáxias.


Sexteto de Seyfert é um exemplo de um grupo compacto de galáxias.


A maioria das galáxias no universo está gravitacionalmente ligada a outras galáxias. Elas formam uma hierarquia de estruturas aglomeradas semelhante a fractais, sendo as menores dessas associações chamadas de grupos. Um grupo de galáxias é o tipo mais comum de aglomerado galáctico, e essas formações contêm a maioria das galáxias (bem como a maior parte da massa bariônica) do universo.Para permanecer gravitacionalmente ligado a este grupo, cada membro da galáxia deve ter uma velocidade suficientemente baixa para impedir que ele escape. Se não houver energia cinética suficiente, porém, o grupo pode evoluir para um número menor de galáxias por meio de junções.

Estruturas maiores contendo muitos milhares de galáxias comprimidas numa área de alguns megaparsecs de largura são chamadas aglomerados. Aglomerados de galáxias são frequentemente dominados por uma única galáxia elíptica gigante, a galáxia mais brilhante do aglomerado, a qual, com o tempo, devido à força de maré destrói suas galáxias satélites e soma as suas massas à sua própria.

Os superaglomerados contêm dezenas de milhares de galáxias, que são encontradas em aglomerados, grupos e às vezes individualmente. Na escala do superaglomerado, as galáxias são dispostas em lâminas e filamentos circundando vastos espaços vazios.Acima desta escala, o universo parece ser isotrópico e homogêneo.

A Via Láctea é membro de uma associação chamada Grupo Local, um grupo relativamente pequeno de galáxias, com um diâmetro de aproximadamente um megaparsec. A Via Láctea e a Galáxia de Andrômeda são as duas galáxias mais brilhantes dentro do grupo; muitas das outras galáxias membros são companheiras anãs dessas duas galáxias.O próprio Grupo Local é parte de uma estrutura semelhante a uma nuvem dentro do Superaglomerado de Virgem, uma grande estrutura de grupos e aglomerados de galáxias centrada no Aglomerado de Virgem.

Observação com múltiplos comprimentos de onda

A poeira presente no meio interestelar é opaca à luz visível. Ela é mais transparente ao infravermelho distante, que pode ser usado para observar as regiões interiores de nuvens moleculares gigantes e núcleos galácticos em grande detalhe.O infravermelho também é usado para observar galáxias distantes, com desvio para o vermelho, que foram formadas muito mais cedo na história do universo. Vapor d’água e dióxido de carbono absorvem porções úteis do espectro infravermelho, portanto telescópios de grande altitude ou espaciais são usados para a astronomia infravermelha.


Esta imagem ultravioleta de Andrômeda mostra regiões azuis contendo estrelas jovens e massivas.


O primeiro estudo não-visual de galáxias, particularmente de galáxias ativas, foi feito usando frequências de rádio. A atmosfera é quase transparente ao rádio entre 5 MHz e 30 GHz (a ionosfera bloqueia sinais abaixo desta faixa).Grandes interferômetros de rádio foram usados para mapear os jatos ativos emitidos pelos núcleos ativos. Radiotelescópios também podem ser usados para observar hidrogênio neutro (radiação de 21 cm), potencialmente incluindo a matéria não ionizada no universo primordial que mais tarde colapsou para formar galáxias.

Telescópios de ultravioleta e de raios-X podem observar fenômenos galácticos de alta energia. Um clarão ultravioleta foi observado quando uma estrela de uma galáxia distante foi despedaçada pelas forças de maré de um buraco negro.A distribuição de gás quente em aglomerados galácticos pode ser mapeada por raios-X. A existência de buracos negros supermaciços nos núcleos de galáxias foi confirmada pela astronomia de raios-X.

Astronomia Extragaláctica



A astronomia extragaláctica é a parte da astronomia que estuda os objetos situados fora da Via Láctea, sobretudo as outras galáxias. Alternativamente a esta acepção pode-se dizer que a astronomia extragaláctica abrange tudo aquilo que a astronomia galáctica não abrange.

Podemos destacar, dentro da astronomia extragaláctica, os atuais estudos sobre a estrutura em larga escala do Universo, sobre o Grupo Local de galáxias e sobre a formação de estrelas em outras galáxias.

História

Apesar de a astronomia extragaláctica ter surgido como tal na primeira metade do século XX, o início de sua história remete ao século XVIII quando vários pensadores e filósofos formularam as primeiras teorias de que o Universo seria composto por aglomerados de estrelas semelhantes à nossa galáxia. Em meados de 1775, Immanuel Kant desenvolve e aperfeiçoa esta ideia, relacionando os tais aglomerados estelares com as pequenas e tênues manchas esbranquiçadas observadas por Pierre-Louis Moreau Maupertius em 1742, criando assim a teoria dos "universos ilha".

Vários observadores, apesar de descrentes quanto à teoria dos "universos ilha", catalogaram as, então chamadas, nebulosas extragalácticas e acabaram reforçando a tese de Kant, já que, para muitos adeptos da mesma, as nebulosas extragalácticas poderiam, simplesmente, ser os "universos ilha". Por volta de 1910, o astrônomo Vesto Melvin Slipher, do Observatório de Lowell, obteve espectros com exposições de até oitenta horas para várias destas nebulosas revelando acentuadas disparidades entre a velocidade radial destas e a das demais estrelas da Via Láctea, provando assim que as nebulosas e as estrelas não poderiam estar associadas.

As pesquisas também concluíram que as nebulosas extragalácticas realmente se encontravam além dos limites da nossa galáxia, pois se estivessem dentro as altas velocidades radiais deveriam produzir movimentos massacraveis mensuráveis, coisa que não acontecia. Várias correntes de pensamento se seguem após as publicações de Slipher, primeiro com o astrônomo holandês Adriaan Van Maanen, que tentou, sem sucesso, contestar os dados coletados por Vesto Slipher, e depois com Heber Doust Curtis e Harlow Shapley, que defendiam dois modelos diferentes de Via Láctea e, por conseguinte, dois modelos diferentes de meio extragaláctico.

A astronomia extragaláctica só surgiria como tal em 1923 quando Edwin Powell Hubble descobriu cefeidas na nebulosa de andrômeda, calculando que por sua distância deveriam estar fora de nossa galáxia e que pelo tamanho da nebulosa, que finalmente pôde ser calculado (relacionando a visibilidade e a distância recém descoberta da mesma), deveria compreender a um objeto de tamanho semelhante ou até maior do que a Via Láctea. Em virtude destas evidências as "nebulosas espirais" passaram a ser consideradas galáxias independentes e a, até então hipotética, existência de outras galáxias foi finalmente comprovada. Surge então a astronomia extragaláctica.


Foto da galáxia NGC 4826 da Constelação da Cabeleira de Berenice.



Astronomia extragaláctica na atualidade

Essa parte da astronomia ainda é pouco explorada devido às dificuldades que existem em estudar tais objetos. Um grande passo para o estudo de outras galáxias foi dado em 1990 quando a NASA lançou o Telescópio Espacial Hubble que em poucos anos ampliou a nossa visão do Universo para muito além dos limites da via-láctea.

Com a visualização e o estudo de outras galáxias foi possível concluir, como já era esperado, que nem todas as galáxias seguem um mesmo padrão morfológico, os cientistas então as classificaram em grupos menores de acordo com seus formatos, propriedades e características. Entre os diferentes tipos de galáxia classificados podemos citar as galáxias elípticas (que são as mais comuns), as galáxias espirais, as galáxias irregulares, as galáxias Seyfert, as radiogaláxias e as galáxias starburst.

A astronomia extragaláctica é um ramo que engloba também o estudo de toda a atividade que ocorre fora da nossa galáxia e não apenas os objetos que lá se encontram.

As galáxias podem possuir massa suficiente para atrair gravitacionalmente outras galáxias, mas normalmente há um equilíbrio razoável fazendo com que as galáxias fiquem próximas mas não a ponto de se encostarem, caracterizando os aglomerados de galáxias. Entretanto, pode ocorrer que duas ou mais galáxias tenham massa suficiente para se atraírem mutualmente, o que ocasiona uma colisão de galáxias.

Há uma outra classe de objetos extragalácticos denominados quasares, suspeita-se que sejam galáxias ou núcleos galácticos supermassivos, mas por estarem de tal forma distantes não é possível definir ao certo todas as suas características, em virtude disso sua real natureza ainda é envolta de mistérios. Na mesma categoria dos quasares encontram-se também os blazares, grupo do qual fazem partes os objetos BL Lacertae e os OVVs, dois tipos bem pouco estudados, mas que provavelmente são quasares sofrendo uma atividade incomum ou atravessando um determinado momento de sua evolução.


Galáxias distantes, como a NGC 3982 da foto acima, só puderam ser fielmente observadas e estudadas a partir da década de 1990, com o lançamento do Great Observatories program.