quarta-feira, 13 de abril de 2016

La Realidad Oculta


La Realidad Oculta: Universos Paralelos y las Profundas Leyes del Cosmos es un libro de divulgación científica escrito por el físico Brian Greene y publicado en 2011. En él se examina el concepto de multiverso y la posibilidad de la existencia de universos paralelos. Fue nominado al Premio Aventis durante el año 2012.

Tipos de multiverso

En su libro, Greene especula la existencia de nueve tipos de multiversos: multiversos mosaico, inflacionario, brana, cíclico, paisaje, cuántico, holográfico, simulado y final.

Multiverso mosaico

El multiverso mosaico es el concepto derivado de la observación de la planitud de la forma del universo, en donde esto implicaría que el universo probablemente sea enorme o infinito. Al ser tremendamente grande existe la posibilidad de que a cierta distancia de nosotros exista otro volumen de Hubble (mosaico) exactamente igual al nuestro. Max Tegmark estima que un volumen exactamente igual al nuestro estaría situado aproximadamente a una distancia de 10(10115) metros, un número más grande que un gúgolplex.

Multiverso inflacionario

El multiverso inflacionario es un concepto derivado de la teoría inflacionaria. La expansión inflacionaria de nuestra región solo duró una pequeña fracción de segundo posterior al big bang, no obstante, existen otras regiones donde esta expansión inflacionaria nunca se ha detenido y es continuada y eterna aislando otras regiones o universos que, al igual que el nuestro, sus inflaciones solo duran una fracción de tiempo.

Multiverso brana

El multiverso brana es un concepto derivado de la hipótesis de las 10 dimensiones espaciales de la teoría M. Nuestro universo brana, al solo ocupar 3 dimensiones espaciales, virtualmente deja vacantes las restantes dimensiones donde pueden estar ocupadas por otras branas. Nuestro universo brana únicamente puede comunicarse con esos otros universos brana por medio de la fuerza de la gravedad, pues es la única fuerza de la naturaleza no anclada a nuestra brana.

Multiverso cíclico

El multiverso cíclico es un concepto derivado del concepto del multiverso brana y de las ideas de Neil Turok, donde propone que con regularidad y cierta cantidad de tiempo dos branas pueden chocar produciendo un reinicio del universo y un big bang una y otra vez por tiempo indefinido. Esta teoría es teoría rival de la teoría inflacionaria pues predice un modelo diferente para observar en la radiación de fondo. En la medida que se observen ondas gravitacionales o no sobre la radiación de fondo la ciencia se iría inclinando por una u otra teoría.

Multiverso paisaje

El multiverso paisaje es un concepto derivado de la Teoría M y del modelo inflacionario. Al igual que el modelo inflacionario hay una expansión eterna y hay regiones aisladas donde de un universo a otro varían grandemente la constante cosmológica, las propiedades de las partículas, la forma de las 10 dimensiones espaciales y el campo de branas. Un universo puede influir a otro por medio del fenómeno de túnel cuántico, creando una región distinta dentro de otro universo. Existen tantas formas de universo como formas posibles de Calabi-Yau y campos cuánticos de branas combinados que, en total, serían unas 10500 posibles maneras de configurar.

Multiverso cuántico

El multiverso cuántico es aquel concepto derivado de la interpretación de la mecánica cuántica de los universos paralelos de Hugh Everett. Mientras que la interpretación de Copenhague sobre la ecuación de Schrödinger postula por decreto arbitrario el colapso de la función de onda al realizar una observación, la interpretación de Hugh Everett postula que las restantes ondas no colapsan a la observación sino que continúan siendo observadas en otros universos paralelos.

Multiverso holográfico

El multiverso holográfico es un concepto derivado del concepto de branas de la Teoría M y del principio holográfico de como se almacena la información en los agujeros negros. Mientras que en la experiencia cotidiana la cantidad de información corresponde al número de partículas en un volumen dado (tridimensional), en los agujeros negros ésto equivale al área de su horizonte de sucesos o superficie (bidimensional) y no de su volumen. Ésto recuerda a los populares hologramas donde los láseres imprimen en una superficie bidimensional de plástico una imagen de apariencia tridimensional. En la teoría M, la información de las cuerdas cerradas (partículas de gravedad) vibrando y moviéndose libremente en un espacio decadimensional pero cerca de una brana negra tridimensional, como si fuese la superficie de un agujero negro, describe la misma información y física que cuerdas abiertas ancladas a esa brana (partículas clásicas de la teoría cuántica de campos).

Multiverso simulado

El multiverso simulado o ciberverso es un concepto derivado de los actuales conceptos sobre metaversos y la teoría de la información. En teoría, simular los últimos docientos mil años de historia humana en una computadora cuántica del tamaño de un ordenador portátil costaría solo la fracción de un segundo. Hay dos estrategias de simulación: emergente y ultrarreduccionista. La estrategia emergente requiere la participación activa del programador ajustando los desfaces creando parches generados por los hallazgos de los habitantes de la simulación. En la estrategía ultrarreduccionista el programador solo fija unos parámetros iniciales y corre el programa haciendo que evolucione por sí mismo. Cada estrategia tiene desventajas, para la emergente la cantidad de desfaces e inconsistencias pudiera hacer colapsar la simulación y en la estrategia reduccionista el redondeo inexacto de las cantidades al evolucionar haría que el programa fallase en un momento dado.

Multiverso final

El multiverso final o matemático es un metaconglomerado de todos los multiversos propuestos y por proponer. Este concepto, propuesto por Max Tegmark, deriva del platonismo matemático, en donde se postula que los objetos matemáticos se descubren, no se inventan. Es como un infinito catálogo o «biblioteca de Babel» con todas las ecuaciones matemáticas ya descubiertas y por descubrir. Cualquier cosa del multiverso tiene una expresión matemática y toda expresión o ecuación matemática puede expresarse en algún tipo de universo (principio de fecundidad de Robert Nozick). Este concepto es tan extenso que incluye al «universo vacío» o la nada, así como a los universos simulados, que siempre estarán subordinados a un área de las matemáticas llamadas funciones matemáticas computables.

Teoría M


En física, la Teoría-M (a veces denominada Teoría-U) es la proposición de una “Teoría universal” que unifique las cinco teorías de las Supercuerdas. Basada en los trabajos de varios científicos teóricos (incluidos: Chris Hull, Paul Townsend, Ashoke Sen, Michael Duff y John H. Schwarz), Edward Witten, del “Institute for Advanced Study”, sugirió la existencia de las Supercuerdas en una conferencia en la Universidad del Sur de California en 1995, usando a la Teoría-M para explicar un número de dualidades previamente observadas, dando el chispazo para una nueva investigación de la teoría de las cuerdas llamada segunda revolución de supercuerdas.

En esta teoría se identifican 11 dimensiones, donde la supergravedad interactúa entre membranas de 2 a 5 dimensiones. Esto evidenciaría la existencia de infinitos Universos paralelos, algunos de los cuales serían como el nuestro con mayores o menores diferencias, y otros que serían impensables con 4 ó 5 dimensiones. Esto explicaría la debilidad de la gravedad, pues la partícula del gravitón sería la única que podría pasar por todas las membranas, perdiendo su fuerza.

A comienzos de los años 1990, se demostró que las diferentes teorías de las Supercuerdas estaban relacionadas por dualidades, que permitían a los físicos relacionar la descripción de un objeto en una teoría de Supercuerdas para eventualmente describir un objeto diferente de otra teoría. Estas relaciones implican que cada una de las teorías de Supercuerdas es un diferente aspecto de una sola teoría, propuesta por Witten, y llamada “Teoría-M”

La Teoría-M no está completa; sin embargo, puede aplicarse a muchas situaciones. La teoría del electromagnetismo también se encontraba en el mismo estado a mediados del siglo XIX; había teorías separadas para el magnetismo y la electricidad y, aunque eran conocidas por estar relacionadas, la relación exacta no se clarificó hasta que James Clerk Maxwell publicó sus ecuaciones en su trabajo de 1864, Una Teoría Dinámica del Campo Electromagnético. Witten había sugerido que una fórmula general de la teoría-M probablemente requeriría del desarrollo de un nuevo lenguaje matemático. Algunos científicos han cuestionado los éxitos tangibles de la Teoría-M dado su estado incompleto y su poder limitado de predicción incluso después de años de intensas investigaciones.

Introducción

Se creía antes de 1995 que había cinco teorías de supercuerda consistentes, que son llamadas respectivamente: Teoría de cuerdas de Tipo I, Teoría de cuerdas de Tipo IIA, Teoría de cuerdas de Tipo IIB, Teoría de cuerda heterótica SO(32) (cuerda HO), y la Teoría de cuerda heterótica E8xE8 (cuerda HE).

Como sugieren sus nombres, algunas de estas teorías de cuerdas están relacionadas entre sí. En 1990, los teóricos descubrieron que algunas de estas relaciones eran tan fuertes que se podían usar como su identificación. La Teoría de cuerda Tipo IIA y la de Tipo IIB están conectadas por dualidad-T; esto significa que esencialmente la descripción de la Teoría de cuerda Tipo IIA de un círculo de radio R es exactamente el mismo en la descripción del IIB de círculo de radio 1/R, que son distancias medidas en unidades de distancia de Planck.

Este es un resultado muy profundo. Primero, es un resultado intrínsecamente mecánico-cuántico: la identificación no es verdaderamente clásica. Segundo, porque podemos construir un espacio al unir círculos en varias formas, se puede notar que cualquier espacio descrito por la Teoría de cuerda IIA también puede ser vista como un espacio diferente al descrito por la Teoría IIB. Esto significa que podemos identificar la Teoría IIA con la Teoría IIB: cualquier objeto que puede ser descrito por la Teoría IIA tiene una descripción equivalente, aunque aparentemente diferente, en términos de la Teoría IIB. Esto sugiere que tanto la Teoría IIA como la Teoría IIB, son aspectos de una misma teoría.

Características de la teoría M

La teoría M contiene mucho más que cuerdas. Contiene tanto objetos de mayor como menor dimensionalidad. Estos objetos son llamados P-branas donde P denota su dimensionalidad (así, una 1-brana es una cuerda y 2-brana una membrana, etc.) o D-branas (si son cuerdas abiertas). Objetos de mayores dimensiones siempre estuvieron presentes en la teoría de cuerdas pero nunca pudieron ser estudiados antes de la Segunda Revolución de las Supercuerdas debido a su naturaleza no-perturbativa. Incluso se ha sugerido que el Big bang fue producido por la colisión de dos de estas membranas, brotando nuestro Universo.

Objetos de la teoría

La teoría M concibe una jerarquía de esferas y membranas sin fin pero con un orden subyacente. Para esta hipótesis, llamada "orden holográfico", definirá entre otros, el dinamismo y/o relaciones dentro del sistema.

Ciclogénesis


Ciclogénesis es el desarrollo o la consolidación de la circulación ciclónica en la atmósfera (un sistema de baja presión).Se trata de un término paraguas para varios procesos diversos, todos los cuales dan lugar al desarrollo de una cierta clase de ciclón. Puede ocurrir en varias escalas, desde la microescala a la escala sinóptica. Los ciclones extratropicales forman ondas a lo largo de los frentes antes de ocluir más adelante en su ciclo vital como ciclones de núcleo frío. Los ciclones tropicales se forman debido al calor latente conducido por actividad de tormenta significativa y son de núcleo cálido. Los mesociclones se forman sobre tierra como ciclones de núcleo cálido y pueden conllevar a la formación de tornados. También formadas a partir de mesociclones son las trombas marinas, aunque a menudo se forman a partir de ambientes de fuerte inestabilidad y cizalladura vertical baja.

Ciclogénesis es lo opuesto a ciclólisis —la disipación de un ciclón— y tiene un equivalente anticiclónico (sistema de alta presión) que se relaciona con la formación de áreas de alta presión: anticiclogénesis.

Escalas meteorológicas

En meteorología se manejan cuatro escalas principales o tamaños de los sistemas: la escala planetaria, la escala sinóptica, la mesoescala y la microescala.La escala planetaria trata los sistemas de tamaño global, como El Niño-Oscilación del Sur. La escala sinóptica cubre una porción de un continente con dimensiones aproximadas de 1000 a 2.500 km de amplitud, como los ciclones extratropicales.La mesoescala es la siguiente escala y generalmente se subdivide en tres subclases: meso-alfa que va de 200 a 2.000 km, es el rango de los ciclones tropicales; meso-beta que va desde 20 a 200 km, es el rango de los mesociclones; meso-gamma que abarca desde 2 a 20 km, rango de la mayoría de las tormentas eléctricas, los grandes cumulus y los tornados de gran dimensión.La microescala es la menor de las escala meteorológicas con una amplitud de menos de 2 km, o sea, la escala de un tornado o una tromba marina.Estas divisiones horizontales no son divisiones rígidas, sino que, en cambio, reflejan las dimensiones típicas de fenómenos que tienen ciertas características dinámicas.

Ciclones extratropicales

Modelo ciclónico noruego

El modelo ciclónico noruego es un modelo de la formación de tormentas ciclónicas de núcleo frío desarrollado por un grupo de meteorólogos noruegos liderados por Vilhelm Bjerknes durante la Primera Guerra Mundial.El concepto principal detrás de este modelo es que los ciclones se desarrollan con una evolución predecible conforme se mueven hacia un borde frontal, ubicándose la zona más madura cerca del extremo noreste del frente, mientras que la menos madura se ubica en el extremo posterior del mismo.

Precursores del desarrollo

Para el desarrollo de un ciclón de latitud media se requiere de un borde frontal preexistente, como se define en el análisis de superficie. El flujo ciclónico comienza alrededor de una perturbación en una sección del frente estacionario debido a una perturbación en el nivel superior, como una onda corta o una vaguada en altos niveles, cerca de un cuadrante favorable de la corriente en chorro de altura.

Modos de desarrollo

La baja presión de superficie puede tener una variedad de causas que intervienen en su formación. La topografía puede originar una baja de superficie cuando un sistema denso de alta presión en niveles bajos se eleva por el este de una barrera montañosa orientada norte-sur.Los sistemas convectivos de mesoescala pueden originar bajas de superficie que inicialmente son de núcleo cálido.Esta perturbación puede desarrollar una formación en forma de onda a lo largo del frente y la baja quedará posicionada en la cresta. Alrededor de la baja el flujo se vuelve ciclónico por definición. Este flujo rotatorio empuja el aire polar hacia el ecuador, desde el oeste de la baja presión a través de su frente frío posterior, y empuja el aire cálido hacia el polo a través del frente cálido. A menudo, el frente frío, que se mueve más rápidamente que el frente cálido, alcanza a éste debido a la lenta erosión de la masa de aire de densidad superior ubicada por delante y por detrás del ciclón, lo que resulta en un sector cálido angostado.En este punto se forma un frente ocluido donde una masa de aire cálido se eleva hacia una vaguada de aire cálido en altura. Este fenómeno se conoce como TROWAL (de TROugh of Warm air ALoft, en inglés) o lengua de aire cálido en altura.

Maduración

La maduración ocurre luego del período de oclusión, una vez que la tormenta ha completado su fortalecimiento y el flujo ciclónico se encuentra en su punto máximo.16 De ahí en adelante, la intensidad de la tormenta disminuye a medida que el ciclón se asocia con la vaguada o baja de altura, volviéndose de núcleo frío. La desaceleración del giro ciclónico, también conocida como ciclolisis, puede entenderse desde la perspectiva de la energética. Una oclusión ocurre y la masa de aire cálido es empujada hacia arriba por sobre la masa de aire frío, la atmósfera se vuelve cada vez más estable y el centro de gravedad del sistema desciende.A medida que el proceso de oclusión desciende paulatinamente por el frente cálido, alejándose de la baja central, se va agotando más y más la energía potencial disponible del sistema. Esta súbita disminución de la energía potencial crea una fuente de energía cinética que finalmente inyecta un golpe de energía al movimiento de la tormenta. Luego de ocurrido este proceso, el período de crecimiento del ciclón, o ciclogénesis, finaliza y el la baja comienza a descender en giro (a llenarse), debido a que más aire converge hacia la base del ciclón del que sale por la parte superior del mismo, a causa de la disminución de la divergencia en niveles altos.

En ocasiones, la ciclogénesis puede volver a darse en ciclones ocluidos. Cuando esto sucede, vuelve a formarse un nuevo centro de baja en el punto triple, es decir, el punto donde se encuentran el frente cálido, el frío y el ocluido. Durante este tipo de ciclogénesis, la baja ocluida principal comienza a llenarse mientras que la baja secundaria se profundiza convirtiéndose el el sistema principal.

Ciclón tropical

Un ciclón tropical existe dentro de la escala meso-alfa. Contrariamente a lo que ocurre con la ciclogénesis de latitudes medias, la ciclogénesis tropical es impulsada por una fuerte convección que se organiza hacia un foco central sin zonas baroclínicas, o frentes, que atraviesen su centro. Aunque la formación de los ciclones tropicales aún es objeto de extensas investigaciones, y la misma no se comprende completamente, se considera que hay seis condiciones principales para la ciclogénesis tropical: temperatura superficial del mar (o TSM) de al menos 26,5 °C, inestabilidad atmosférica, humedad alta en los niveles inferior a medio de la troposfera, suficiente fuerza Coriolis para desarrollar un centro de baja presión, una perturbación o foco preexistente de baja presión y cizalladura vertical del viento baja, generalmente no superior a 20 nudos. Estos ciclones de núcleo cálido tienden a formarse en los océanos a entre 10 y 30 grados del ecuador.

Mesociclón

Los mesociclones varían en tamaño desde meso-alfa hasta microescala. El término «mesociclón» se reserva comúnmente para rotaciones de niveles medios con tormentas eléctricas severas y son ciclones de núcleo cálido impulsados por el calor latente de su actividad eléctrica asociada. Los tornados se forman en el sector cálido del ciclón extratropical donde existe una fuerte corriente en chorro en niveles altos.Se piensa que los mesociclones se forman cuando un súbito cambio en la velocidad o dirección del viento pone a girar a una parte de la atmósfera, en un giro de forma tubular. Se cree que la convección ascendente de una tormenta eléctrica levanta este aire en giro, inclinando la orientación de las corrientes «tubulares» hacia arriba, haciendo que toda la corriente ascendente rote como una columna vertical. Al rotar la corriente ascendente, se puede dar la formación de lo que se conoce como wall cloud, es una nube en forma de muro o pezuña de caballo,compuesta por capas de nubes giratorias que descienden del mesociclón y que tienden a formarse cerca del centro del mismo. Nótese que las wall clouds no necesitan un mesociclón para formarse y no siempre giran. Al descender la wall cloud, puede entonces formarse una nube en forma de embudo en su centro. Ésta es la primera fase en la formación de un tornado.Se piensa que la presencia de un mesociclón es un factor clave en la formación de tornados asociados con tormentas eléctricas severas.

Tornado

Los tornados existen en el dominio de microescala o en el extremo inferior de la escala meso-beta. El ciclo comienza cuando una fuerte tormenta eléctrica desarrolla un mesociclón rotatorio a unos pocos kimóletros de altura en la atmósfera, convirtiéndose así en una supercelda. Al irse incrementando la precipitación dentro de la tormenta, ésta arrastra consigo un área de aire en rápido descenso, conocida como corriente descendente del flanco trasero (o RFD, sigla en inglés de rear flank downdraft). Ésta se acelera al acercarse al suelo y arrastra al mesociclón en rotación hacia el suelo consigo.

A medida que el mesociclón se aproxima al suelo, un embudo de condensación visible parece descender desde la base de la tormenta, a menudo desde una wall cloud giratoria. Al descender el embudo, la RFD también alcanza el suelo, creando un frente de ráfagas que puede causar daño incluso a buena distancia del tornado. En general, la nube en forma de embudo comienza a causar daño a nivel del suelo (al convertirse en tornado) unos pocos minutos después que el RFD ha tocado el suelo.

Tromba marina

La trombas marinas son fenómenos de microescala. Aunque algunas son tan fuertes (tornádicas) como sus equivalentes en tierra, los tornados, la mayoría de ellas es mucho más débil y son causadas por diferentes dinámicas atmosféricas. Normalmente, se desarrollan en ambientes cargados de humedad que presentan una cizalladura vertical del viento mínima a lo largo de líneas de convergencia tales como brisas marinas, líneas de convergencia por fricción de masas de tierra cercanas o vaguadas de superficie.Su nube madre puede ser un inofensivo cúmulus moderado o una poderosa tormenta eléctrica. La trombas a menudo se desarrollan mientras su nube madre está en proceso de desarrollo y se cree que obtienen un giro ascendente al moverse sobre el límite de superficie desde la cizalladura horizontal cerca de la superficie, y luego se estira hacia arriba una vez que el vórtice de la cizalladura de bajo nivel se ha alineado con un cúmulus o tormenta en desarrollo. Se ha constatado que los tornados débiles, conocidos como torbellinos se desarrollan de manera similar.

Términos relacionados

La ciclogénesis es el fenómeno opuesto a la ciclolisis, término relacionado, a su vez, con el debilitamiento de ciclones de superficie. El término tiene un equivalente anticiclónico: la anticiclogénesis, que refiere a la formación de los sistemas de alta presión.

Ciclón



En meteorología, ciclón usualmente suele aludir a vientos intensos acompañados de tormenta, aunque también designa a las áreas del planeta en las cuales la presión atmosférica es baja. En esta segunda acepción el significado de ciclón es equivalente al de borrasca, y es el fenómeno opuesto al anticiclón.

Los ciclones y anticiclones tienen una importancia fundamental en la generación de los vientos o corrientes atmosféricas. En efecto, un área de bajas presiones genera vientos al atraer las masas de aire atmosférico desde las zonas de altas presiones o anticiclónicas.

Etimología

La palabra “ciclón” fue usada por primera vez por Henry Piddington alrededor del año 1840. Tiene su etimología en el griego κυκλών kyklón ‘círculo en movimiento’ (genitivo κυκλώνας kyklónas).

Ciclogénesis

El desarrollo de la circulación ciclónica en la atmósfera, es decir la formación de un sistema de baja presión, se denomina ciclogénesis. Se trata de un término que incluye varios procesos similares que dan lugar al desarrollo de una cierta clase de ciclón. Puede ocurrir en cualquiera de las escalas que se manejan en meteorología (microescala, mesoescala y escala sinóptica), excepto en la escala planetaria.

Tipos

Ciclones tropicales

Los ciclones tropicales (también conocidos como tormentas tropicales, huracanes y tifones) son ciclones que se forman generalmente en océanos calientes (generalmente tropicales) y de ahí succionan la energía de la evaporación y la condensación. Son característicos por tener una fuerte área de baja presión en la superficie y una alta presión en los niveles altos de la atmósfera. Se originan por la formación de centros de baja presión atmosférica en el mar.

Son altamente destructivos, ya que producen fuertes lluvias con vientos de al menos 120 km/h, llegando sus ráfagas, en algunas ocasiones, a más de 300 km/h.

Ciclones extratropicales

El ciclón extratropical se forma a latitudes mayores a 30°. Se compone por dos o más masas de aire; por lo tanto, se asocia a uno o más frentes.

La familia de ciclones extratropicales es tan amplia que normalmente se intenta definir una subfamilia. Pero ésta es una tarea muy difícil debido a que, de hecho, cada ciclón es único e irrepetible. Un estudio muy amplio sobre ciclones muestra, sin embargo, que se pueden observar características comunes entre ellos, pudiéndose hacer una clasificación.

Uno de los criterios más utilizados para la clasificación es el mecanismo inicial involucrado en el desarrollo del ciclón.

Ciclones subtropicales

Un ciclón subtropical es un sistema meteorológico que tiene algunas características de un ciclón tropical y algunas de un ciclón extratropical. Suelen formarse en latitudes cercanas al ecuador.

Ciclones polares

Los ciclones polares son similares en comparación y tamaño a los ciclones tropicales, aunque generalmente tienen una vida más corta.

Los ciclones polares tienen típicamente varios cientos de kilómetros de diámetro y vientos fuertes (aunque generalmente no tienen la intensidad de un huracán). A diferencia de los típicos ciclones tropicales estos se desarrollan con una extrema rapidez, alcanzando su fuerza máxima en 24 horas.

Los ciclones árticos poseen extensas áreas de baja presión en las regiones polares que tienen una débil rotación ciclónica con una máxima explosión de 120 metros cúbicos.

Mesociclones

Un mesociclón es un vórtice de aire, aproximadamente de 2 a 10 km de diámetro (mesoescala en meteorología), dentro de un tipo de tormentas conocidas técnicamente como supercélulas debido a su autonomía. Cuando un mesociclón muere, si la nube precipita, ésta transmite su inercia de rotación en capas más bajas comprimiéndose en forma de nube embudo lo cual hace que se incremente la rotación formando un tornado.

Los mesociclones se forman cuando hay fuertes cambios en la velocidad o dirección del viento a diferentes niveles de presión atmosférica, lo cual se conoce como cizalladura del viento. La presencia de los mesociclones sólo se puede verificar con un Radar Doppler.

Anticiclón Del Atlántico Sur

El anticiclón del Atlántico Sur, también conocido con el nombre de anticiclón de Santa Elena, designa una zona subtropical situada en el océano Atlántico meridional, en torno a las coordenadas 25°S 15°O, donde por lo general se encuentra una amplia zona de alta presión atmosférica o anticiclón.Esto no quiere decir que la posición y la intensidad de este anticiclón sean permanentes, sino más bien que generalmente se encuentra un anticiclón en las cartas meteorológicas que describen la presión media mensual en dicha zona. Sus nombres se deben a su ubicación en el océano Atlántico y a la isla de Santa Elena, única tierra en esas latitudes.

Formación

En la región de las latitudes subtropicales, entre 30 y 35 grados de latitud sur y norte, se encuentran anticiclones más o menos permanentemente. Es la parte descendente de las células de Hadley. En efecto, cerca del ecuador, donde la fuerza de Coriolis es bastante escasa, se establece una circulación directa del aire. En los bajos niveles de la atmósfera, la diferencia de temperatura entre el ecuador y las regiones más al norte o al sur, menos calientes, da lugar a la zona de convergencia intertropical donde el aire más caliente se eleva debido a la convergencia y al principio de Arquímedes. En consecuencia, este aire se enfría al ganar altura y vuelve a bajar más al norte y al sur.

Efectos

Este sistema afecta mayormente a la navegación a vela ya que los vientos son escasos y es necesario pasar lejos al norte o al sur, según la dirección de viaje, siguiendo la dirección de los vientos, que en un anticiclón circulan en sentido horario en el hemisferio norte y antihorario en el hemisferio sur.

Climatológicamente, se encuentran climas secos bajo la circulación anticiclónica. Su influencia no se detiene allí. Por ejemplo, el anticiclón del Atlántico Sur aporta tiempo bueno y cálido de la costa de América del Sur hacia África en verano, ya que transporta del aire tropical hacia su lado meridional.

Sobre su lado septentrional, donde los vientos alisios son del Este, se encuentra la zona de convergencia intertropical que controla el monzón africano y el período de las lluvias en las Guyanas.

Anticiclón de las Azores

El denominado popularmente anticiclón de las Azores es un anticiclón dinámico situado, normalmente, en el centro del Atlántico Norte, a la altura de las islas portuguesas de las Azores. Es el centro de acción que induce sobre Europa, en general, y sobre Portugal y España, en particular, tiempo seco, soleado y caluroso durante el verano. Excepcionalmente también puede ejercer su influencia en otoño y en primavera, e incluso en invierno. En este caso el centro del anticiclón se suele situar en el centro del mar Cantábrico, provocando inviernos secos, templados y desplazando cualquier borrasca existente.

Anticiclón

Un anticiclón es una zona atmosférica de alta presión, en la cual la presión atmosférica (corregida al nivel del mar) es superior a la del aire circundante. El aire de un anticiclón es más estable que el aire que le circunda y desciende sobre el suelo desde las capas altas de la atmósfera, produciéndose un fenómeno denominado subsidencia. Los anticiclones, debido a lo anterior, provocan situaciones de tiempo estable y ausencia de precipitaciones, ya que la subsidencia limita la formación de nubes.Los anticiclones van en sentido contrario de las borrascas. Los meteorólogos estudian cada día estos fenómenos.

Concepto

La circulación del aire en el interior de un anticiclón es, en el hemisferio norte, en el sentido de las manecillas del reloj, (dextrógiro), y en el hemisferio sur en sentido contrario a las manecillas del reloj, (levógiro). El sentido de giro del aire es pues inverso al que se da en un ciclón o borrasca, (el cual es levógiro en el hemisferio norte y dextrógiro en el hemisferio sur).

Un anticiclón térmico es el descenso de una masa de aire debido a que está más fría que el entorno. Se produce cuando el aire desciende por enfriamiento, aumenta la presión atmosférica, y la pérdida de temperatura es mayor en las capas bajas que en las altas, provocando una Inversión Térmica. Da un tiempo seco, soleado y frío.

Un anticiclón dinámico (también llamado Telipeciclón) es el descenso de una masa de aire debido a que es empujada hacia la superficie de la Tierra por la advección (variación de un escalar en un punto dado por efecto de un campo vectorial, es decir, dentro de lo referente a la meteorología, el proceso de transporte de una propiedad atmosférica) en altura de masas de aire que la desplazan del lugar en el que está. Da tiempo seco, soleado y caluroso. El anticiclón se caracteriza por su presión atmosférica que es superior a la del aire cercano, que produce un efecto expansivo en esa zona. Lo anterior lo diferencia de la depresión, cuya presión atmosférica es más baja que el aire circundante, la cual produce un efecto de contracción del aire hacia el centro de la borrasca. Anticiclón: en las zonas donde el aire frío desciende a la presión normal se le suma la presión que ejerce el aire al descender.

Exosfera

La exosfera o exósfera es la capa de la atmósfera de un planeta o satélite en la que los gases poco a poco se dispersan hasta que la composición es similar a la del espacio exterior. Es la capa menos densa y su ubicación varía en cada astro, en el caso de la Tierra comienza a los 690 kilómetros del suelo, en el de la Luna se encuentra a nivel del suelo.

Exosfera terrestre

Se localiza por encima de la termosfera, aproximadamente a unos 690 kilómetros de altitud, en contacto con el espacio exterior, donde existe prácticamente el vacío. Es la región atmosférica más distante de la superficie terrestre. En esta capa la temperatura no varía y el aire pierde sus cualidades físico–químicas.

Su límite inferior se localiza a una altitud generalmente de entre 600 y 700 km, aproximadamente. Su límite con el espacio llega en promedio a los 10 000 km por lo que la exosfera está contenida en la magnetosfera (representa el campo magnético de la tierra) (500-60 000 km). En esa región, hay un alto contenido de polvo cósmico que cae sobre la Tierra. Es la zona de tránsito entre la atmósfera terrestre y el espacio interplanetario y en ella se pueden encontrar satélites meteorológicos de órbita polar.

En la exosfera, el concepto popular de temperatura desaparece, ya que la densidad del aire es casi despreciable; además contiene un flujo o bien llamado plasma, que es el que desde el exterior se le ve como los Cinturones de Van Allen. Aquí es el único lugar donde los gases pueden escapar ya que la influencia de la fuerza de la gravedad no es tan grande. En la exosfera también se encuentran los satélites artificiales.

Está constituida por materia plasmática. En ella la ionización de las moléculas determina que la atracción del campo magnético terrestre sea mayor que la del gravitatorio (de ahí que también se la denomina magnetosfera).

Por lo tanto, las moléculas de los gases más ligeros poseen una velocidad media que les permite escapar hacia el espacio interplanetario sin que la fuerza gravitatoria de la Tierra sea suficiente para retenerlas.

Los gases que así se difunden en el vacío representan una pequeñísima parte de la atmósfera terrestre.

Ionosfera

La ionósfera o termósfera es la parte de la atmósfera terrestre ionizada permanentemente debido a la fotoionización que provoca la radiación solar. Se sitúa entre la mesosfera y la exosfera, y en promedio se extiende aproximadamente entre los 80 km y los 500 km de altitud, aunque los límites inferior y superior varían según autores y se quedan en 80-90 y 600-800 km respectivamente. Por otra parte, algunos consideran que la alta ionosfera constituye el límite inferior de la magnetosfera, solapándose ligeramente ambas capas (entre los 500 y 600-800km).La ionosfera también se conoce como termosfera por las elevadas temperaturas que se alcanzan en ella debido a que los gases están en general ionizados. Si el sol está activo, las temperaturas en la termosfera pueden llegar a 1.500 °C; sin embargo, estas elevadas temperaturas no se corresponden con la sensación de calor que tendríamos en la troposfera porque en la termosfera la densidad es muchísimo más baja. Los gases aparecen ionizados porque esta capa absorbe las radiaciones solares de menor longitud de onda (rayos gamma y rayos X) que son altamente energéticos.

Entre las propiedades de la ionosfera, encontramos que esta capa contribuye esencialmente en la reflexión de las ondas de radio emitidas desde la superficie terrestre, lo que posibilita que éstas puedan viajar grandes distancias sobre la Tierra gracias a las partículas de iones (cargadas de electricidad) presentes en esta capa. Además, en esta capa se desintegran la mayoría de meteoroides, a una altura entre 80 y 110 km, debido al rozamiento con el aire y dan lugar a meteoros o estrellas fugaces.

Pero las estrellas fugaces no son el único fenómeno luminoso que ocurre en esta capa. En las regiones polares las partículas cargadas portadas por el viento solar son atrapadas por el campo magnético terrestre incidiendo sobre la parte superior de la ionosfera y dando lugar a la formación de auroras.

Definición como capa

Existe una diferencia entre los criterios seguidos para designar una capa como termosfera o ionosfera, por lo que se trata de dos entidades físicas a priori diferentes. Mientras que la designación de termosfera se basa simplemente en el perfil de temperaturas vertical, el criterio para designar la ionosfera hace referencia a la presencia destacable de iones y eso tiene relación con la energía solar que utilizan los escasos átomos de gases del aire para ionizarse: la ionización es el proceso que calienta gran parte del aire. Sin embargo, los límites obtenidos con ambos criterios son muy difusos y además coinciden entre sí. De hecho, según algunos autores la ionosfera estaría contenida en la termosfera,5 mientras que según otros, sería al contrario y la termosfera4 se contendría en la ionosfera,2 y sin embargo los intervalos de ambas capas son aproximadamente coincidentes en todos los casos.

A pesar de ello, existe una pequeña diferencia entre el criterio de la ionización y el de la temperatura, y es que debido a la variación de la radiación solar entre el día y la noche, la ionización de las capas altas de la atmósfera cambian más bruscamente con el ciclo diario que el perfil de temperatura vertical, que se mantiene aproximadamente constante. Por ese motivo, los límites asociados a la ionosfera son todavía más variables que los de la termosfera. De hecho, el límite inferior de la ionosfera es muy variable: mientras que por la noche se encuentra en la capa E, a unos 110 km, durante el día aparece una capa D, alrededor de los 60 km. La explicación de este hecho es relativamente sencilla: la radiación ultravioleta es absorbida por los gases que forman el aire en las capas atmosféricas más elevadas durante la noche y también durante el día (en mayor proporción, obviamente) y transformada en iones, que son buenos conductores de la electricidad, lo mismo que vemos en un tubo de neón y en la producción de las auroras polares, las cuales se deben también a este proceso.

Dicho en otros términos: la radiación solar contiene longitudes de onda que van desde los rayos infrarrojos (los de mayor longitud de onda) hasta los ultravioleta (los de menor longitud de onda). El espectro visible sólo va desde el rojo hasta el violeta. Los seres humanos tienen que protegerse tanto de la radiación infrarroja (cremas o filtros solares, que deben aplicarse independientemente de la temperatura como sucede en los lugares nevados, donde las quemaduras por el sol pueden ser muy graves) y también de los ultravioleta (rayos UVA) especialmente en los lentes de sol para protegernos los ojos. Pero la mayor parte de los rayos ultravioleta que nos llegan del sol son "filtrados" en las capas superiores de la atmósfera transformando los escasos átomos de gases atmosféricos en iones y esta ionización es la que calienta esa capa ionizada ya que dicha ionización corresponde a una verdadera excitación electrónica que causa el aumento del calor de la termosfera. Dicho calor, aunque puede ser muy elevado, carece de sentido por estar producido en un ambiente muy enrarecido de gases (se trata de un proceso similar al de los hornos de microondas, donde el calor producido se disipa con mayor rapidez que en un horno convencional al cesar la excitación producida electrónicamente en los alimentos).

Así pues, los rayos ultravioleta del espectro solar ionizan las capas altas de la atmósfera y, a su vez, la capa ionizada impide la propagación hacia la superficie terrestre de los nuevos rayos ultravioleta. Como resulta lógico, cuando mayor es la intensidad de la radiación solar (en horas del mediodía y algo después), la ionización profundiza más en la atmósfera (hasta más abajo).

Composición

En la ionosfera, los gases atmosféricos son tan tenues que es posible encontrar electrones libres e iones positivos. La ionosfera posee por lo tanto propiedades de un gas tenue y de un plasma. La masa total de la ionosfera es inferior a un 0,1 % de la masa de la atmósfera. Las cargas se separan por la acción de las radiaciones de alta energía provenientes del Sol. En las capas tenues de la ionosfera los tiempos de recombinación de los iones son superiores al periodo día noche por lo que la ionosfera retiene gran parte de sus propiedades incluso en las regiones no iluminadas del planeta. Dependiendo del grado de ionización de cada nivel de altura pueden encontrarse picos de ionización en capas denominadas "D," "E," "F1," y "F2". Dado que el grado de ionización es producido directamente por la acción solar una actividad anómala del Sol puede alterar las propiedades de la ionosfera y su capacidad de reflejar las ondas de radio terrestre alterando las comunicaciones en la Tierra. La estructura de la ionosfera viene marcada por el gradiente de la densidad electrónica.

Así tenemos las siguientes capas:

60 km: capa D. Sólo aparece durante el día y es sumamente absorbente para frecuencias por debajo de unos 10 MHz, protegiendo la superficie terrestre de gran parte de la radiación espacial.
80-110 km: capa E o capa de Kennelly-Heaviside (o capa de Heaviside).
180-600 km: capas F o capas de Appleton. Las capas F se elevan por la noche por lo que cambian sus propiedades de reflexión.
180-300 km: capa F1. Esta capa sufre una fluctuación diaria mayor que la F2, por lo que llega a mezclarse con ésta.
300-600 km: capa F2. Es la capa más alta de la ionosfera.

Características

La ionosfera es un sistema dinámico, en constante cambio, gobernado por múltiples parámetros, de los cuales tienen una influencia destacable todas las variaciones que se producen en la atmósfera, como:

Las emisiones electromagnéticas

Las variaciones que se producen en el campo magnético terrestre.

Un caso real de aplicación de estas medidas fue el terremoto de mayo de 1960 en Chile, donde se detectó en la ionosfera, con 6 días de antelación un aumento en la generación de Emisiones Electromagnéticas ( EMEs ).

El método más preciso actualmente para medir esas variaciones ionosféricas son los ionogramas.

Para tratar cada una de las peculiaridades que acontecen en la ionosfera, ésta se estructuró en una serie de regiones. la región que hay más allá de la ionosfera recibe el nombre de exosfera y se extiende hasta los 9.600 kilómetros, lo que constituye el límite exterior de la atmósfera.

Mesosfera

En meteorología se denomina mesosfera o mesósfera a la parte de la atmósfera terrestre situada por encima de la estratosfera y por debajo de la termosfera. Es la capa de la atmósfera en la que la temperatura va disminuyendo a medida que se aumenta la altura, hasta llegar a unos −80 °C a los 80 kilómetros aproximadamente. Se extiende desde la estratopausa (zona de contacto entre la estratosfera y la mesosfera) a unos 50km, hasta una altura de unos 80 km donde la temperatura vuelve a descender hasta unos −70 °C u −80 °C. La mesosfera es la tercera capa de la atmósfera de la Tierra. La temperatura disminuye a medida que se sube, como sucede en la troposfera. Puede llegar a ser hasta de −90 °C. Es la zona más fría de la atmósfera.

Contiene sólo cerca del 0,1 % de la masa total del aire. Es importante por la ionización y las reacciones químicas que ocurren en ella. La baja densidad del aire en la mesosfera determinan la formación de turbulencias y ondas atmosféricas que actúan a escalas espaciales y temporales muy grandes. La mesosfera es la región donde las naves espaciales que vuelven a la Tierra empiezan a notar la estructura de los vientos de fondo, y no sólo el freno aerodinámico. También en esta capa se observan las estrellas fugaces que son meteoroides que se han desintegrado en la termosfera.

Estratosfera

La estratosfera o estratósfera es una de las capas más importantes de la atmósfera, esta se sitúa entre la troposfera y la mesosfera, y se extiende en una capa que va desde los 10 hasta los 50 km de altura aproximadamente. La temperatura aumenta progresivamente desde los −55 °C de la tropopausa hasta alcanzar los 0 °C de la estratopausa, aunque según algunos autores puede alcanzar incluso los 17 °C o más.Es decir, en esta capa la temperatura aumenta con la altitud, al contrario de lo que ocurre en las capas superior e inferior. Esto es debido principalmente a la absorción de las moléculas de ozono que absorben radiación electromagnética en la región del ultravioleta.

En la parte baja de la estratósfera la temperatura es relativamente estable, y en toda la capa hay muy poca humedad.

La estratósfera es una región en donde se producen diferentes procesos radiactivos, dinámicos y químicos. La mezcla horizontal de los componentes gaseosos se produce mucho más rápidamente que la mezcla vertical.

A una altura aproximadamente de 2,5 veces la altura del Everest y unas 50 veces el Empire State de New York solo algunos aviones como el Mig-31 ruso, el SR-71, el Concorde, el U-2 y el UAV RQ-4 Global Hawk pueden volar. Cerca del final de la estratósfera se encuentra la capa de ozono que absorbe la mayoría de los rayos ultravioleta del Sol.

El 14 de octubre de 2012 el austríaco Felix Baumgartner se lanzó desde la estratosfera a una altura de 38 969 metros. Rompió así el récord de salto en caída libre desde punto más alto y el de vuelo tripulado en globo con una distancia a la superficie terrestre de 39 068 m.El 24 de octubre de 2014 este récord fue superado por el vicepresidente de Google, Alan Eustace (57 años), quien se lanzó desde una altura de 41 425 metros.

Troposfera

La troposfera o tropósfera es la capa de la atmósfera terrestre que está en contacto con la superficie de la Tierra.

Tiene alrededor de 17 km de espesor en el ecuador terrestre y solo 7 km en los polos, y en ella ocurren todos los fenómenos meteorológicos que influyen en los seres vivos, como los vientos, la lluvia y las nieves. Además, concentra la mayor parte del oxígeno y del vapor de agua. En particular este último actúa como un regulador térmico del planeta; sin él, las diferencias térmicas entre el día y la noche serían tan grandes que no podríamos sobrevivir. Es de vital importancia para los seres vivos. La troposfera es la capa más delgada del conjunto de las capas de la atmósfera.

La temperatura en la troposfera desciende a razón de aproximadamente 6,5 ºC por kilómetro de altura, por encima de los 2000 metros de altura.

Atmósfera


La atmósfera es la capa de gas que rodea a un cuerpo celeste. Los gases resultan atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, por lo que tienen atmósferas muy profundas.

Atmósfera terrestre

La altura de la atmósfera de la Tierra alcanza los 10.000km, aunque más de la mitad de su masa se concentra en los seis primeros kilómetros y el 75 % en los primeros 11 km de altura desde la superficie planetaria. La masa de la atmósfera es de 5,1 x 1018 kg.

La atmósfera terrestre protege la vida de la Tierra, absorbiendo en la capa de ozono parte de la radiación solar ultravioleta, y reduciendo las diferencias de temperatura entre el día y la noche, y actuando como escudo protector contra los meteoritos.

La composición de la atmósfera

Casi la totalidad del aire (un 95 %) se encuentra a menos de 30 km de altura, encontrándose más del 75 % en la tropósfera. El aire forma en la troposfera una mezcla de gases bastante homogénea, hasta el punto de que su comportamiento es el equivalente al que tendría si estuviera compuesto por un solo gas.

Nitrógeno: constituye el 78 % del volumen del aire. Está formado por moléculas que tienen dos átomos de nitrógeno, de manera que su fórmula es N2. Es un gas inerte, es decir, que no suele reaccionar con otras sustancias.
Oxígeno: representa el 21 % del volumen del aire. Está formado por moléculas de dos átomos de oxígeno y su fórmula es O2. Es un gas muy reactivo y la mayoría de los seres vivos lo necesita para vivir.
Otros gases: del resto de los gases de la atmósfera, el más abundante es el argón (Ar), que contribuye en 0,9 % al volumen del aire. Es un gas noble que no reacciona con ninguna sustancia.
Dióxido de carbono: está constituido por moléculas de un átomo de carbono y dos átomos de oxígeno, de modo que su fórmula es CO2. Representa el 0,03 % del volumen del aire y participa en procesos muy importantes. Las plantas lo necesitan para realizar la fotosíntesis, y es el residuo de la respiración y de las reacciones de combustión. Este gas, muy por detrás del vapor de agua, ayuda a retener el calor de los rayos solares y contribuye a mantener la temperatura atmosférica dentro de unos valores que permiten la vida.
Ozono: es un gas minoritario que se encuentra en la estratosfera. Su fórmula es O3, pues sus moléculas tienen tres átomos de oxígeno. Es de gran importancia para la vida en nuestro planeta, ya que su producción a partir del oxígeno atmosférico absorbe la mayor parte de los rayos ultravioleta procedentes del Sol.
Vapor de agua: se encuentra en cantidad muy variable y participa en la formación de nubes. Es el principal causante del efecto invernadero.
Partículas sólidas y líquidas: en el aire se encuentran muchas partículas sólidas en suspensión, como por ejemplo, el polvo que levanta el viento o el polen. Estos materiales tienen una distribución muy variable, dependiendo de los vientos y de la actividad humana. Entre los líquidos, la sustancia más importante es el agua en suspensión que se encuentra en las nubes.

Capas de la atmósfera de la Tierra

Troposfera

Es la capa más cercana a la superficie terrestre, donde se desarrolla la vida y ocurren la mayoría de los fenómenos meteorológicos. Tiene unos 8 km de espesor en los polos y alrededor de 16 km en el ecuador. En esta capa la temperatura disminuye con la altura alrededor de 6,5 °C por kilómetro. La troposfera contiene alrededor del 75 % de la masa gaseosa de la atmósfera, así como casi todo el vapor de agua. En ella se ubica la tropopausa.

Estratosfera

Es la capa que se encuentra entre los 10 km y los 50 km de altura. Los gases se encuentran separados formando capas o estratos de acuerdo a su peso. Una de ellas es la capa de ozono que protege a la Tierra del exceso de rayos ultravioleta provenientes del Sol. Las cantidades de oxígeno y anhídrido carbónico son casi nulas y aumenta la proporción de hidrógeno. Actúa como regulador de la temperatura, siendo en su parte inferior cercana a los -60 °C y aumentando con la altura hasta los 10 o 17 °C. En ella se ubica la estratopausa.

Mesosfera

Es la capa donde la temperatura puede disminuir ( o descender) hasta los -70 °C conforme aumenta su altitud. Se extiende desde la estratopausa (zona de contacto entre la estratosfera y la mesosfera) hasta una altura de unos 80 km, donde la temperatura vuelve a descender hasta unos -80 °C o -90 °C. En ella se ubica la mesopausa.

Termosfera o Ionosfera

Es la capa que se encuentra entre los 90 y los 400 kilómetros de altura. Su límite superior es la termopausa. En ella existen capas formadas por átomos cargados eléctricamente, llamados iones. Al ser una capa conductora de electricidad es la que posibilita las transmisiones de radio y televisión por su propiedad de reflejar las ondas electromagnéticas. El gas predominante es el nitrógeno. Allí se produce la destrucción de los meteoritos que llegan a la Tierra. Su temperatura aumenta desde los -73 °C hasta llegar a 1.500 °C. En ella se ubica la ionopausa.

Exosfera

La exosfera es la capa de la atmósfera terrestre en la que los gases poco a poco se dispersan hasta que la composición es similar a la del espacio exterior. Es la última capa de la atmósfera, se localiza por encima de la termosfera, aproximadamente a unos 580 km de altitud, en contacto con el espacio exterior, donde existe prácticamente el vacío. Es la región atmosférica más distante de la superficie terrestre. En esta capa la temperatura no varía y el aire pierde sus cualidades físico–químicas. En ella se ubica la exopausa.

Su límite inferior se localiza a una altitud generalmente de entre 600 y 700 km, aproximadamente. Su límite con el espacio llega en promedio a los 10 000 km por lo que la exosfera está contenida en la magnetosfera (500-60 000 km), que representa el campo magnético de la Tierra. En esa región, hay un alto contenido de polvo cósmico que cae sobre la Tierra y que hace aumentar su peso en unas 20 000 toneladas.Es la zona de tránsito entre la atmósfera terrestre y el espacio interplanetario y en ella se pueden encontrar satélites meteorológicos de órbita polar. En la exosfera, el concepto popular de temperatura desaparece, ya que la densidad del aire es casi despreciable; además contiene un flujo o bien llamado plasma, que es el que desde el exterior se le ve como los Cinturones de Van Allen. Aquí es el único lugar donde los gases pueden escapar ya que la influencia de la fuerza de la gravedad no es tan grande. En la exosfera también se encuentran los satélites artificiales. Está constituida por materia plasmática. En ella la ionización de las moléculas determina que la atracción del campo magnético terrestre sea mayor que la del gravitatorio (de ahí que también se la denomina magnetosfera). Por lo tanto, las moléculas de los gases más ligeros poseen una velocidad media que les permite escapar hacia el espacio interplanetario sin que la fuerza gravitatoria de la Tierra sea suficiente para retenerlas. Los gases que así se difunden en el vacío representan una pequeñísima parte de la atmósfera terrestre.

La exosfera es la capa superior de la atmósfera terrestre. En la exosfera, una molécula puede viajar hacia arriba moviéndose lo suficientemente rápido para alcanzar la velocidad de escape, si se mueve por debajo de la velocidad de escape se le impedirá escapar del cuerpo celeste por la gravedad. Todo debido a la baja densidad de la exosfera. La exosfera es la última capa antes del espacio exterior. Dado que no existe una frontera clara entre el espacio exterior y la exosfera, la exosfera es a veces considerada una parte del espacio exterior. Composición de la Exosfera Los principales gases dentro de la exosfera son los gases más ligeros:

Hidrógeno
Algo de helio
Dióxido de carbono
Oxígeno atómico.

Límites de la Exosfera La altitud de su límite inferior, conocida como la termopausa o exobase, oscila entre 250 a 500 kilómetros dependiendo de la actividad solar. El límite superior de la exosfera puede ser definido teóricamente por la altitud de aproximadamente 190 000 kilómetros; la mitad de la distancia a la Luna. Esto es debido a que como dijimos la zona de transición entre la atmósfera de la Tierra y el espacio interplanetario es la misma exosfera.

Las atmósferas de los demás planetas del sistema solar

Venus

Venus posee una densa atmósfera. Su presión atmosférica equivale a 90 atmósferas terrestres (una presión equivalente a una profundidad de un kilómetro bajo el nivel del mar en la Tierra). Está compuesta principalmente por CO2 y una pequeña cantidad de monóxido de carbono, nitrógeno, ácido sulfúrico, argón y partículas de azufre. La enorme cantidad de CO2 de la atmósfera provoca un fuerte efecto invernadero que eleva la temperatura de la superficie del planeta hasta cerca de 460 °C. Esto hace que Venus sea más caliente que Mercurio.

La temperatura no varía de forma significativa entre el día y la noche. A pesar de la lenta rotación de Venus, los vientos de la atmósfera superior circunvalan el planeta en tan solo cuatro días, alcanzando velocidades de 360 km/h y distribuyendo eficazmente el calor. Además del movimiento zonal de la atmósfera de oeste a este, hay un movimiento vertical en forma de célula de Hadley que transporta el calor del ecuador hasta las zonas polares e incluso a latitudes medias del lado no iluminado del planeta.

La radiación solar casi no alcanza la superficie del planeta. La densa capa de nubes refleja al espacio la mayor parte de la luz del Sol y gran parte de la luz que atraviesa las nubes es absorbida por la atmósfera.

Marte

La atmósfera de Marte es muy tenue, con una presión superficial de solo 7 a 9 hPa frente a los 1013 hPa de la atmósfera terrestre, es decir, una centésima parte de la terrestre. La presión atmosférica varía considerablemente con la altitud, desde casi 9 hPa en las depresiones más profundas, hasta 1 hPa en la cima del Monte Olimpo. Está compuesta fundamentalmente de dióxido de carbono (95,3 %) con un 2,7 % de nitrógeno, un 1,6 % de argón y trazas de oxígeno molecular (0,15 %), monóxido de carbono (0,07 %) y vapor de agua (0,03 %).

La atmósfera es lo bastante densa como para albergar vientos y tormentas de polvo que, en ocasiones, pueden abarcar el planeta entero durante meses. Este viento es el responsable de la existencia de dunas de arena en los desiertos marcianos. La bóveda celeste marciana es de un suave color rosa salmón debido a la dispersión de la luz por los granos de polvo muy finos procedentes del suelo ferruginoso. A diferencia de la Tierra, ninguna capa de ozono bloquea la radiación ultravioleta. Hay nubes en mucha menor cantidad que en la Tierra y son de vapor de agua o de dióxido de carbono en latitudes polares.

La débil atmósfera marciana produce un pequeño efecto invernadero que aumenta la temperatura superficial unos 5 grados, mucho menos que lo observado en Venus y en la Tierra, que tienen más gases de efecto invernadero y por eso su temperatura es más cálida.

En las latitudes extremas, la condensación del dióxido de carbono forma nubes de cristales de nieve carbónica.

Júpiter

La atmósfera de Júpiter se extiende hasta grandes profundidades, donde la enorme presión comprime el hidrógeno molecular hasta que se transforma en un líquido de carácter metálico a profundidades de unos 10 000 km. Más abajo se sospecha la existencia de un núcleo rocoso formado principalmente por materiales más densos.

En la parte alta de la atmósfera se observa una circulación atmosférica formada por bandas paralelas al ecuador, en la que puede encontrarse la Gran Mancha Roja, que es una tormenta con más de 300 años de antigüedad.

Se observan nubes de diferentes colores que refleja, que se forman a distintas alturas y con diferentes composiciones. Júpiter tiene un potente campo magnético que provoca auroras polares.

Saturno

La atmósfera de Saturno posee bandas oscuras y zonas claras similares a las de Júpiter, aunque la distinción entre ambas es mucho menos clara. Hay fuertes vientos en la dirección de los paralelos. En las capas altas se forman auroras por la interacción del campo magnético planetario con el viento solar.

Urano

El planeta Urano cuenta con una gruesa atmósfera formada por una mezcla de hidrógeno, helio y metano, que puede representar hasta un 15 % de la masa planetaria y que le da su color característico.

Neptuno

La atmósfera de Neptuno está formada por hidrógeno, helio y un pequeño porcentaje de gas metano, que le proporciona el color azul verdoso. Sus partículas están levemente más separadas de lo que deberían estar por causa de la temperatura, que es de -200 °C, semejante a la de Urano, que está ubicado más cerca del Sol, por lo que se estima que tiene una fuente interna de calor.

Caso único: la atmósfera de Titán

Titán es el único satélite conocido con una atmósfera densa. La atmósfera de Titán es más densa que la de la Tierra, con una presión en superficie de una vez y media la de nuestro planeta y con una capa nubosa opaca formada por aerosoles de hidrocarburos que oculta los rasgos de la superficie de Titán y le dan un color anaranjado. Al igual que en Venus, la atmósfera de Titán gira mucho más rápido que su superficie.

La atmósfera está compuesta en un 94 % de nitrógeno y es la única atmósfera rica en este elemento en el sistema solar aparte de nuestro propio planeta, con trazas de varios hidrocarburos que constituyen el resto (incluyendo metano, etano y otros compuestos orgánicos).

La presión parcial del metano es del orden de 100 hPa y este gas cumple el papel del agua en la Tierra, formando nubes en su atmósfera. Estas nubes causan tormentas de metano líquido en Titán que descargan precipitaciones importantes de metano que llegan a la superficie produciendo, en total, unos 50 L/m² de precipitación anual.

Atmósferas muy tenues

La Luna

La Luna tiene una atmósfera insignificante, debido a la baja gravedad, incapaz de retener moléculas de gas en su superficie. La totalidad de su composición aún se desconoce. El programa Apolo identificó átomos de helio y argón, y más tarde (en 1988) observaciones desde la Tierra añadieron iones de sodio y potasio. La mayor parte de los gases en su superficie provienen de su interior.

Mercurio

La sonda Mariner 10 demostró que Mercurio, contrariamente a lo que se creía, tiene una atmósfera, muy tenue, constituida principalmente por helio, con trazas de argón, sodio, potasio, oxígeno y neón. La presión de la atmósfera parece ser solo una cienmilésima parte de la presión atmosférica en la superficie de la Tierra.

Los átomos de esta atmósfera son muchas veces arrancados de la superficie del planeta por el viento solar.

Ío

Ío tiene una fina atmósfera compuesta de dióxido de azufre y algunos otros gases. El gas procede de las erupciones volcánicas, pues a diferencia de los volcanes terrestres, los volcanes de Ío expulsan dióxido de azufre. Ío es el cuerpo del Sistema Solar con mayor actividad volcánica. La energía necesaria para mantener esta actividad proviene de la disipación a través de efectos de marea producidos por Júpiter, Europa y Ganímedes, dado que las tres lunas se encuentran en resonancia orbital (la resonancia de Laplace). Algunas de las erupciones de Ío emiten material a más de 300 km de altura. La baja gravedad del satélite permite que parte de este material sea permanentemente expulsado de la luna, distribuyéndose en un anillo de material que cubre su órbita.

Europa

Observaciones del Telescopio espacial Hubble indican que Europa tiene una atmósfera muy tenue (10−11 bares de presión en la superficie) compuesta de oxígeno. A diferencia del oxígeno de la atmósfera terrestre, el de la atmósfera de Europa es casi con toda seguridad de origen no biológico. Más probablemente se genera por la luz del sol y las partículas cargadas que chocan con la superficie helada de Europa, produciendo vapor de agua que es posteriormente dividido en hidrógeno y oxígeno. El hidrógeno consigue escapar de la gravedad de Europa, pero no así el oxígeno.

Encélado

Instrumentos de la sonda Cassini han revelado la existencia en Encélado de una atmósfera de vapor de agua (aproximadamente 65 %) que se concentra sobre la región del polo sur, un área con muy pocos cráteres. Dado que las moléculas de la atmósfera de Encélado poseen una velocidad más alta que la de escape, se piensa que se escapa permanentemente al espacio y al mismo tiempo se restaura a través de la actividad geológica. Las partículas que escapan de la atmósfera de Encélado son la principal fuente del Anillo E que está en la órbita del satélite y tiene una anchura de 180 000 km.

Ariel

Es uno de los 27 satélites naturales de Urano. Su atmósfera está compuesta por amoníaco gaseoso y líquido en su superficie y compuesta por agua en el interior.

Tritón

Tritón tiene un diámetro algo inferior que el de la Luna terrestre y posee una tenue atmósfera de nitrógeno (99,9%) con pequeñas cantidades de metano (0,01%). La presión atmosférica tritoniana es de solo 14 microbares.

La sonda Voyager 2 consiguió observar una fina capa de nubes en una imagen que hizo del contorno de esta luna. Estas nubes se forman en los polos y están compuestas por hielo de nitrógeno; existe también niebla fotoquímica hasta una altura de 30 km que está compuesta por varios hidrocarburos semejantes a los encontrados en Titán, y que llega a la atmósfera expulsada por los géiseres. Se cree que los hidrocarburos contribuyen al aspecto rosado de la superficie.

Plutón

Plutón posee una atmósfera extremadamente tenue, formada por nitrógeno, metano y monóxido de carbono, que se congela y colapsa (choca) sobre su superficie a medida que el planeta se aleja del Sol. Es esta evaporación y posterior congelamiento lo que causa las variaciones en el albedo del planeta, detectadas por medio de fotómetros fotoeléctricos en la década de 1950 (por Gerard Kuiper y otros). A medida que el planeta se aproxima al Sol, los cambios se hacen menores. Los cambios de albedo se repiten pero a la inversa a medida que el planeta se aleja del Sol rumbo a su afelio.

Sedna, Quaoar y 2004 DW

No se sabe con certeza la composición de su atmósfera aunque se cree que está compuesta por hidrógeno, metano y helio.

Representación de la variación de la presión con la altura

Si representamos el logaritmo de la presión o de la densidad en función de la altura obtendríamos una línea recta si la atmósfera fuese isoterma, es decir, si la escala de temperatura no variase con la altura. La escala de altura es pequeña si la temperatura es baja y ello significa que la presión y la densidad decrecen rápidamente. Si la tempreratura es alta la escala es grande y varían suavemente. Pero la escala de altura también depende de la masa molecular, y masas moleculares altas hacen disminuir la escala de alturas al igual que planetas grandes con elevadas aceleraciones de la gravedad, que también hacen disminuir la escala de alturas y la presión y la densidad decrecen rápidamente.

Así, en un planeta más grande que la Tierra, con idéntica composición atmosférica y temperatura, la densidad y presión cambian más rápidamente con la altura y se puede hablar de una «atmósfera dura» frente a un planeta menor en el que H sería mayor y la atmósfera sería «blanda».

Magnetósfera De La Tierra


La magnetósfera de la tierra es una capa formada por la interacción del magnetismo de la tierra y el viento solar. Se extiende por encima de la ionósfera, más arriba de los 500 km de altura.En algunas fuentes figura con el nombre de "exósfera", sin embargo ese nombre se refiere a un concepto diferente, aunque ambos ocupan aproximadamente el mismo espacio en la parte superior de la atmósfera.

Esta capa protege a la tierra de la llegada de radiación, especialmente del viento solar, y también de una parte de los rayos cósmicos, desviando las partículas cargadas hacia los polos magnéticos a través de mecanismos de reconexión electromagnética, lo que causa las auroras australes y boreales. Si no fuese por esta capa, la vida en la tierra probablemente no sería posible, o sería de forma muy diferente a como la conocemos.

La magnetósfera es causada por el campo magnético de la tierra, originado por el núcleo de hierro fundido que posee, y los materiales cargados eléctricamente dentro de él.

Casi todos los planetas poseen una magnetósfera, y en el sistema solar, solamente Marte y Venus no poseen una.

La magnetósfera sufre continuamente modificaciones en su forma y estructura, debido principalmente a la variación de la intensidad del viento solar, por lo que cuando hay mucha intensidad, puede comprimirse en la dirección al sol, y extenderse mucho más en dirección contraria.

Si la magnetósfera no existiese en la Tierra, la cantidad constante y permanente de radiación a la que se ve sometida constantemente atravesaría la atmósfera, y llegaría hasta la superficie. Una de las múltiples consecuencias de esto sería que el planeta hubiese ido perdiendo su agua, tanto de la atmósfera como de los océanos. Luego de más de mil millones de años en ese estado, es probable que el planeta se hubiese quedado sin nada o muy poca del agua que posee, como posiblemente ocurrió en Marte.

Tamaño y forma

La forma de la magnetósfera está definida por la intensidad del viento solar, y la intensidad del campo magnético, por tanto tiene mucha variabilidad. Si no existiese viento solar, las líneas magnéticas de la tierra se expandirían sin límite (teóricamente hasta el infinito). Pero bajo la presión del viento solar, la magnetósfera es muy comprimida. Allí donde termina se denomina "magnetopausa", y en la dirección del sol está aproximadamente a unos cien mil kilómetros de la superficie. Sin embargo, en la dirección contraria al sol, se expande muchísimo, hasta cerca a un millón de kilómetros,6 por lo que esa frontera forma una figura en forma de elipsoide.

Estudios de la magnetósfera

El 3 de junio de 2007, los satélites especializados en el estudio del campo magnético terrestre, las auroras y la magnetósfera, descubrieron un hueco muy grande en el campo magnético, lo que permite que la radiación (principalmente en viento solar) penetre hasta el interior de la magnetósfera, y sobrecargue la misma. Anteriormente había hipótesis sobre huecos en el campo magnético, pero el hueco encontrado es diez veces más grande de lo que se pensaba. El tamaño de la abertura era de aproximadamente 4 veces el diámetro de la tierra.

Magnetosfera


La magnetosfera o magnetósfera es una región alrededor de un planeta en la que el campo magnético de éste desvía la mayor parte del viento solar formando un escudo protector contra las partículas cargadas de alta energía procedentes del Sol. La magnetosfera terrestre no es única en el Sistema Solar y todos los planetas con campo magnético: Mercurio, Júpiter, Saturno, Urano y Neptuno, poseen una magnetosfera propia. Ganímedes, satélite de Júpiter, tiene un campo magnético pero demasiado débil para atrapar el plasma del viento solar. Marte tiene una muy débil magnetización superficial sin magnetosfera exterior.

Las partículas del viento solar que son detenidas forman los cinturones de Van Allen. En los polos magnéticos, las zonas en las que las líneas del campo magnético terrestre penetran en su interior, parte de las partículas cargadas son conducidas sobre la alta atmósfera produciendo las auroras boreales o australes.Tales fenómenos aurorales han sido también observados en Júpiter y Saturno.

Estructura

En la parte más externa y amplia de la atmósfera de un planeta. La magnetosfera interacciona con el viento solar en una región denominada magnetopausa que en la dirección al sol es de menor tamaño, y en dirección contraria es sumamente extendida. En el caso de la Tierra se encuentra a unos 100 000 km y en el caso de Júpiter a más de 4 millones de kilómetros. Por delante de la magnetopausa se encuentra la superficie de choque entre el viento solar y el campo magnético. En esta región el plasma solar se frena rápidamente antes de ser desviado por el resto de la magnetósfera. Las partículas cargadas del viento solar son arrastradas por el campo magnético sobre los polos magnéticos dando lugar a la formación de auroras polares.

Historia

La magnetosfera terrestre fue descubierta en 1958 por el satélite estadounidense Explorer I. Antes de ello se conocían algunos efectos magnéticos en el espacio ya que las erupciones solares producían en ocasiones tormentas magnéticas en la Tierra detectables por medio de ondas de radio. No obstante, nadie sabía cómo o por qué se producían estas corrientes. También era desconocido el viento solar.

Antes de esto, los científicos sabían que fluía la corriente eléctrica en el espacio debido a las erupciones solares. No se sabía, sin embargo, cuándo esas corrientes fluían ni por qué. En agosto y septiembre de 1958, el Ejército de los Estados Unidos inició el Proyecto Argus se realizó para probar una teoría sobre la formación de los cinturones de radiación que pueden tener uso táctico en la guerra.

En 1959 Thomas Gold propuso el nombre de la magnetósfera, cuando escribió: "La región por encima de la ionosfera, en la que el campo magnético de la tierra, predomina sobre las corrientes de gas y partículas rápidas cargadas, se sabe que se extiende en una distancia del orden de 10 radios terrestres, por lo que podría ser llamada apropiadamente como magnetósfera"

Magnetopausa



La magnetopausa es la frontera magnética entre el campo magnético o magnetosfera y el viento solar, hecho de plasma.

La frontera magnética entre el campo magnético terrestre y el viento solar, llamada magnetopausa, tiene un frente en forma de bala, que cambia progresivamente a un cilindro. Su corte transversal es aproximadamente circular.

En la magnetosfera las distancias se miden a menudo en radios terrestres (RE), siendo un radio terrestre de 6.371 km. En esas unidades, la distancia desde el centro de la Tierra al "morro" de la magnetosfera es de unos 10,5 RE y hasta los costados es de unos 15 RE, mientras que el radio de la lejana cola es de 25-30 RE. Por comparación, la distancia media a la Luna es de unos 60 RE.

Sin embargo, esas son solo distancias medias: la presión del viento solar aumenta y disminuye, y cuando lo hace la magnetopausa se contrae o se expande. Por ejemplo, cuando es golpeada la frontera por un flujo rápido procedente de una eyección de masa de la corona , empuja su "morro" hasta más allá de la órbita sincrónica a 6,6 RE (esto ocurre normalmente varias veces al año).

Aproximadamente a los 2RE por delante de la magnetopausa está el frente de choque permanente, como el que se forma por delante de una bala o de un avión supersónicos. Cuando ese viento solar cercano a la Tierra pasa por ese frente, se desacelera repentinamente y algo de su energía cinética se convierte en calor. Luego el viento acelera de nuevo y cuando alcanza los 100-200 RE más allá de la Tierra, no solo ha recuperado su velocidad, sino que también ha infiltrado la cola de la magnetosfera; cómo y dónde aún es objeto de una investigación activa.

¿Por qué el campo terrestre es un obstáculo para el viento solar?

Como se afirmó anteriormente (en la exposición sobre el viento solar), las líneas del campo magnético interplanetario (IMF) son transportadas junto al viento solar como si fueran cuerdas y como si los iones en movimiento fuesen cuentas engarzadas en ellas. Una "cuenta" ensartada en una línea de campo solar deberá permanecer siempre en esa línea de campo y, excepto que otras líneas de campo de diferentes fuentes se entrecrucen con ella, nunca estará en una línea conectada con la Tierra. Los dos plasmas, el de la Tierra y el viento solar, forman dos familias separadas y la magnetopausa es la frontera entre las dos.